Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Quang Minh
Xem chi tiết
Yeutoanhoc
24 tháng 6 2021 lúc 19:41

`a)M=(x^4+2)/(x^6+1)+(x^2-1)/(x^4-x^2+1)-(x^2+3)/(x^4+4x^2+3)`

`=(x^4+2)/(x^6+1)+(x^2-1)/(x^4-x^2+1)-(x^2+3)/((x^2+1)(x^2+3))`

`=(x^4+2)/(x^6+1)+((x^2-1)(x^2+1))/(x^6+1)-1/(x^2+1)`

`=(x^4+2+x^4-1-x^4+x^2-1)/(x^2+1)`

`=(x^4+x^2)/(x^2+1)`

`=(x^2(x^2+1))/(x^2+1)`

`=x^2`

`b)` tìm gtnn chứ?

`M=x^2>=0`

Dấu '=" `<=>x=0`

An Nhiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Ánh Dương Trịnh
Xem chi tiết
Big City Boy
Xem chi tiết
Akai Haruma
17 tháng 2 2021 lúc 17:40
Big City Boy
Xem chi tiết
Akai Haruma
17 tháng 2 2021 lúc 17:39

Lời giải:

ĐK: $x\neq 1;2;3$

\(A=x^2\left[\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}\right].\frac{(x-1)(x-3)}{x^4+x^2+1}\)

\(=x^2.\frac{x-3+x-1}{(x-1)(x-2)(x-3)}.\frac{(x-1)(x-3)}{x^4+x^2+1}=x^2.\frac{2(x-2)}{(x-1)(x-2)(x-3)}.\frac{(x-1)(x-3)}{x^4+x^2+1}=\frac{2x^2}{x^4+x^2+1}\)

Áp dụng BĐT AM-GM: $x^4+1\geq 2x^2$

$\Rightarrow A\leq \frac{2x^2}{2x^2+x^2}=\frac{2}{3}$

Vậy $A_{\max}=\frac{2}{3}$. Giá trị đạt tại $x^4=1$ hay $x=-1$ (do $x\neq 1$)

 

Minh Cao
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2021 lúc 21:04

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

nam do duy
Xem chi tiết

Biểu thức nào em?

Yuki Nguyễn
Xem chi tiết
Lê Thị Vân Anh
Xem chi tiết
Huỳnh Chấn Hưng
18 tháng 3 2017 lúc 9:58

Max M = 2 nha bn

nguyen ngoc song thuy
18 tháng 3 2017 lúc 10:06

xét \(\dfrac{1}{M}=\dfrac{x^4+1}{4x^2}=\dfrac{x^2}{4}+\dfrac{1}{4x^2}\ge\dfrac{1}{2}\left(cauchy\right)\)

\(\left(\dfrac{1}{M}\right)_{min}=\dfrac{1}{2}\) khi \(x^2=1\Rightarrow x=\pm1\)

\(\Rightarrow M_{ln}=2\) khi x = \(\pm\)1