Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hòa An Nguyễn
Xem chi tiết
Video Music #DKN
28 tháng 12 2017 lúc 16:50

a/ Xét \(\Delta ABH\)\(\Delta ACH\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{BAH}=\widehat{CAH}\) (AH phân giác \(\widehat{A}\) )

AH cạnh chung

Vậy \(\Delta ABH=\Delta ACH\left(cgc\right)\)

b/ Ta có: \(\widehat{AHB}=\widehat{AHC}\left(\Delta ABH=\Delta ACH\right)\)

\(\widehat{AHB}+\widehat{AHC}=180^o\) (kề bù )

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AH\perp BC\)

c/ Gọi I là giao điểm của AH và DE.

Xét \(\Delta\) vuông BDH và \(\Delta\) vuông CEH có:

\(\widehat{B}=\widehat{C}\left(\Delta ABH=\Delta ACH\right)\\ BH=CH\left(\Delta ABH=\Delta ACH\right)\)

Vậy \(\Delta\) vuông BDH = \(\Delta\) vuông CEH (ch-gn )

\(\Rightarrow BD=CE\) (cạnh tương ứng )

Ta có:

\(AD=AB-BD\left(D\in AB\right)\\ AE=AC-CE\left(E\in AC\right)\)

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BD=CE\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow AD=AE\)

Xét \(\Delta AID\)\(\Delta AIE\) có:

\(AD=AE\left(cmt\right)\)

\(\widehat{DAH}=\widehat{EAH}\) (AD phân giác \(\widehat{A}\) )

AI cạnh chung

Vậy \(\Delta AID=\Delta AIE\left(cgc\right)\)

\(\Rightarrow\widehat{AID}=\widehat{AIE}\) (góc tương ứng )

\(\widehat{AID}+\widehat{AIE}=180^O\) (kề bù )

\(\Rightarrow\widehat{AID}=\widehat{AIE}=\dfrac{180^O}{2}=90^O\\ \Rightarrow AH\perp ED\)

mà:

\(AH\perp BC\left(cmt\right)\\ \Rightarrow ED//BC\)

Chúc bạn học tốt haha

Giang Thủy Tiên
28 tháng 12 2017 lúc 16:10

Chứng minh AH⊥BC hả bạn

Giang Thủy Tiên
28 tháng 12 2017 lúc 17:29

Hòa An Nguyễn mk chỉ vẽ đc hình thôi..còn cách giải thì mk lười bẩm sinh r....>.<

B C H A D E

Vy Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 9 2021 lúc 23:41

b: Xét ΔAHC vuông tại H có 

\(AC^2=AH^2+HC^2\)

hay \(AH^2=AC^2-HC^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AC^2-HC^2=AN\cdot AC\)

Nguyễn văn công
Xem chi tiết
Lê Nguyễn Hiếu Thảo
Xem chi tiết
keditheoanhsang
22 tháng 10 2023 lúc 8:34

a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.

Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.

Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.

b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2

Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.

c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)

Vậy, ta đã chứng minh AF = AE * tan(B).

d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB

Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB

Vậy, ta đã chứng minh CE/BF = AC/AB.

Qanhh pro
Xem chi tiết
oanh
Xem chi tiết
Không Tên
24 tháng 7 2018 lúc 15:15

B M A N C H

Tam giác AHB vuông tại H có HM là trung tuyến

=>  HM = 1/2 AB   => AB = 30 cm

Tam giác AHC vuông tại H có HN là trung tuyến

=>  HN = 1/2 AC  => AC = 40 cm

Áp dụng Pytago ta có:  AB2 + AC2 = BC2

                         =>  BC2 = 302 + 402 = 2500

                         => BC = 50

Áp dụng hệ thức lượng ta có:

AB2 = BH.BC  => \(BH=\frac{AB^2}{BC}=18\)

AC2 = CH.BC  =>  \(CH=\frac{AC^2}{BC}=32\)

HA.BC = AB.AC  =>  \(HA=\frac{AB.AC}{BC}=24\)

pham trung thanh
Xem chi tiết
Đỗ Chang Anh
1 tháng 5 2018 lúc 11:59

câu b ntn v ạ

Lê Minh Phương
Xem chi tiết
Vương Nhất Đông
Xem chi tiết
💋Amanda💋
4 tháng 8 2019 lúc 16:28
https://i.imgur.com/GFMQTpB.jpg
💋Amanda💋
4 tháng 8 2019 lúc 16:28
https://i.imgur.com/UqsOqnh.jpg