a/ Xét \(\Delta ABH\) và \(\Delta ACH\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAH}=\widehat{CAH}\) (AH phân giác \(\widehat{A}\) )
AH cạnh chung
Vậy \(\Delta ABH=\Delta ACH\left(cgc\right)\)
b/ Ta có: \(\widehat{AHB}=\widehat{AHC}\left(\Delta ABH=\Delta ACH\right)\)
mà \(\widehat{AHB}+\widehat{AHC}=180^o\) (kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
c/ Gọi I là giao điểm của AH và DE.
Xét \(\Delta\) vuông BDH và \(\Delta\) vuông CEH có:
\(\widehat{B}=\widehat{C}\left(\Delta ABH=\Delta ACH\right)\\ BH=CH\left(\Delta ABH=\Delta ACH\right)\)
Vậy \(\Delta\) vuông BDH = \(\Delta\) vuông CEH (ch-gn )
\(\Rightarrow BD=CE\) (cạnh tương ứng )
Ta có:
\(AD=AB-BD\left(D\in AB\right)\\ AE=AC-CE\left(E\in AC\right)\)
mà \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BD=CE\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow AD=AE\)
Xét \(\Delta AID\) và \(\Delta AIE\) có:
\(AD=AE\left(cmt\right)\)
\(\widehat{DAH}=\widehat{EAH}\) (AD phân giác \(\widehat{A}\) )
AI cạnh chung
Vậy \(\Delta AID=\Delta AIE\left(cgc\right)\)
\(\Rightarrow\widehat{AID}=\widehat{AIE}\) (góc tương ứng )
mà \(\widehat{AID}+\widehat{AIE}=180^O\) (kề bù )
\(\Rightarrow\widehat{AID}=\widehat{AIE}=\dfrac{180^O}{2}=90^O\\ \Rightarrow AH\perp ED\)
mà:
\(AH\perp BC\left(cmt\right)\\ \Rightarrow ED//BC\)
Chúc bạn học tốt
Hòa An Nguyễn mk chỉ vẽ đc hình thôi..còn cách giải thì mk lười bẩm sinh r....>.<
Cho mik hỏi câu c có chỗ là ( ch-gn ) , đó là cái j zạ.