Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Vinh
Xem chi tiết
Xyz OLM
25 tháng 10 2020 lúc 8:59

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)

Khách vãng lai đã xóa
le khoi nguyen
Xem chi tiết
Xem chi tiết
Lê Thị Thục Hiền
6 tháng 7 2021 lúc 14:14

1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)

Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)

Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)

\(\Rightarrow A=4\)

2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)

Nguyễn Ngọc Lộc
6 tháng 7 2021 lúc 14:09

Bài 2 :

a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy ...

b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

\(\Rightarrow y=3\)

Vậy ...

Duong Thi Nhuong
Xem chi tiết
Trần Việt Linh
21 tháng 10 2016 lúc 22:25

a) Gọi số đo của các goác lần lượt là x,y,z

Theo đề bài ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=180\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{180}{9}=20\)

=>\(\begin{cases}x=40\\y=60\\z=80\end{cases}\)

Huy Giang Pham Huy
21 tháng 10 2016 lúc 22:36

vì các góc của tam giác tỉ lệ vs 2,3,4 nen ế gọi các góc lần lượt là a,b,c thì a/2=b/3=c/4 vì a,b,c là 3 góc của tam giác nên a+b+c=180

áp dụng gì đó ko nhớ có

a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20

=> a/2=20 nên a=40cm

b/3=20 nên b=60cm

c/4=20 nên c=80cm

vậy 3 cạnh là 40cm,60cm và 80cm

Huy Giang Pham Huy
21 tháng 10 2016 lúc 22:25

cái này nghe quen quen nhưng ko nhớ lắm

Yuki
Xem chi tiết
Nguyễn Thị Thùy Dương
8 tháng 11 2015 lúc 21:34

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

\(M=1+1+1+1=4\)

vuthaophuong
Xem chi tiết
Anh Vũ
Xem chi tiết
Võ Đông Anh Tuấn
22 tháng 11 2016 lúc 11:34

\(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}=\frac{\left(a+b+c+d-x\right)+\left(x-a\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}\)\(=\frac{\left(a+b+c+d-x\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{1}{\left(b-a\right)\left(c-a\right)\left(d-a\right)}\)

Áp dụng hoán vị vòng \(b\rightarrow c\rightarrow d\rightarrow a\rightarrow b\) vào VT , ta được :

\(\left(a+b+c+d-x\right)\)[\(\frac{1}{\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(a-x\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)\left(b-d\right)\left(b-x\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)\left(c-d\right)\left(c-x\right)}\)\(+\frac{1}{\left(d-a\right)\left(d-b\right)\left(d-c\right)\left(d-x\right)}\).

Quy đồng mẫu thức và tính toán biểu thức trong [ ] ta được :

\(\frac{-1}{\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)}\)

Vậy ...............

roronoa zoro
Xem chi tiết
ST
14 tháng 1 2018 lúc 14:20

Câu hỏi của Đỗ thị như quỳnh - Toán lớp 7 | Học trực tuyến

Bùi Nhâm Tú
Xem chi tiết
Phạm Đức Duy
30 tháng 11 2016 lúc 17:37

a)
Có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)=> \(\frac{a^3}{b^3}=\frac{b}{c^3}^3=\frac{c^3}{d^3}\)1
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)2
từ 1 => \(\frac{a^3}{b^3}=\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)3
Từ 2 và 3

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

b) \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{b+a}=\frac{a+b+c}{b+c+c+a+b+a}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
=> \(x=\frac{1}{2}\)

c) có vấn đề về đề bài bạn nhế

NHỚ KICK MÌNH NHÉ><