cho tam giác ABC vuôn tại A có AB=16cm,AC=12cm.Kẽ AH vuôn góc vs BC tại H ,Tính AH,BH,CH
Cho tam giác ABC vuôn tại A,đường cao AH.Biết AH=12cm,BH=9cm
a Tính AB,AC,BC,HC
b Tính diện tích tam giác ABC
a, Xét tam giác ABC vuông tại A, đường cao AH có:
+ AH2 =BH.CH
=>CH=\(\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)
=>BC=BH+CH=9+16=25(cm)
+ AB2=BH.BC
=>AB=\(\sqrt{BH.BC}=\sqrt{9.25}=15\left(cm\right)\)
+AC2=CH.BC
=>AC=\(\sqrt{CH.BC}=\sqrt{16.25}=20\left(cm\right)\)
a, Stam giác ABC=\(\dfrac{AB.AC}{2}=\dfrac{15.20}{2}=150\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, BC=7cm. Từ A kẻ AH vuôn góc BC (H thuộc BC).
a, tính AB và AC
b, tính chu vi của tam giác ABC
c, cmr: HB=HC
d,tính AH
Bổ sung đề: \(\widehat{B}=30^0\)
a) Xét ΔABC vuông tại A có \(\widehat{B}=30^0\)(gt)
mà cạnh đối diện với \(\widehat{B}\) là cạnh AC
nên \(AC=\dfrac{1}{2}\cdot BC\)(Định lí tam giác vuông)
\(\Leftrightarrow AC=\dfrac{1}{2}\cdot7=\dfrac{7}{2}cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=7^2-\left(\dfrac{7}{2}\right)^2=\dfrac{147}{4}\)
hay \(AB=\dfrac{7\sqrt{3}}{2}cm\)
Vậy: AC=3,5cm; \(AB=\dfrac{7\sqrt{3}}{2}cm\)
Cho tam giác ABC vuông tại A có AB < AC. Vẽ AH vuông BC tại H. Vẽ HI vuông AB tại I. Trên tia HI lấy D sao cho I là trung điểm của DH.
a) Chứng minh tam giác ADI = tam giác AHI
b) Chứng minh AD vuông góc BD
c) Cho BH = 9 và HC = 16. Tính AH
d) Vẽ HK vuông góc AC tại K và trên tia HK lấy điểm E sao cho K là trung điểm của HE. Chứng minh DE < BD + CE
hộ mik câu c và d với
Hình bạn tự vẽ nha
c)Có BH=9 ; HC=16 mà BH+HC=BC => BC=25
Xét tam giác ABC vuông tại A có:
AB^2 + AC^2 = BC^2 (đ/l Py-ta-go)
mà BC=25
=>AB^2+AC^2=25^2=625
Xét tam giác AHB vuông tại H có:
AB^2=AH^2+BH^2 (1)
Xét tam giác AHC vuông tại H có:
AC^2=AH^2+HC^2 (2)
Cộng từng vế của (1) và (2) ta được :
AB^2+AC^2=(AH^2+BH^2)+(AH^2+HC^2)
=2AH^2+BH^2+HC^2
mà AB^2+AC^2=625 ; BH=9 ; HC=16
=>625=2AH^2+81+256
=>625=2AH^2+337
=>2AH^2=625-337=288
=>AH^2=144
=>AH=12
d)Gọi M là trung điểm của BC => BC=2BM=2CM
Có AH vuông góc BC mà AB<AC
=>HB<HC mà HB+HC=BC
=>HB<1/2 BC
=>HB<BM
Có AH vuông góc BC hay AH vuông góc HM
=>tam giác AHM vuông tại H
=>AH<AM (AM là cạnh huyền)
CM được AH=AD=AE
mà AH<BM
=>BM>AD và BM>AE
=>2BM > AD+AE=DE
mà 2BM=BC
=>BC>DE
=>BH+HC>DE
hay BD+CE>DE (CM được BH=BD và HC=CE)
Vậy.....
Cho tam giác ABC vuông tại A, AB=3cm ,AC=4cm,
a giải tam giác ABC
b kẻ đường cao AH. Tính AH,BH,CH
c cho AD là đường phân giác của góc BAC từ D vẽ đường vuôn góc qua AC (F thuộc AC) tính DF
\(BC=\sqrt{3^2+4^2}=5\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)
\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)
cho tam giác abc vuông tại a,có cạnh ac=6cm,ab=8cm.kẻ ah vuôn góc với cạnh bc tại h.tính độ dài ah( vẽ hình hộ luôn ạ)?
Áp dụng đl pytago vào tam giác vuông abc, ta có:
\(ab^2+ac^2=bc^2\)
\(6^2+8^2=bc^2\)
\(\Rightarrow bc=\sqrt{6^2+8^2}=10cm\)
ah=\(\dfrac{1}{2}bc=\dfrac{1}{2}10=5cm\)
cho tam giác ABC vuông tại A có AB=16cm ; AC=12cm. Kẻ AH vuông góc với BC tại H. Gọi S là diện tích tam giác ABC.
1.Tính S
2.tính BC, AH
3.Tính BH, CH
1 diện tích tam giác là: (16x12):2= 96
2
2) Có ΔABC vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : SΔABC = SΔABH + SΔACH
=> => BH^2.AH+HC^2.AH/2=SΔABC
=> AH.BC^2/2 = 96
=> AH = 96 . 2/20 = 9.6 (cm)
3) Có ΔABH vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
1. Cho tam giác ABC vuông tại A(AB<AC) có đường cao AH. Biết BC = 25cm, AH = 12cm. Tính AB, AC, BH, CH
2. Cho tam giác ABC vuồng tại A, đường cao AH. Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH, BH
bài 1 :tam giác ABC có AD=20cm dựng AH vuông góc vs BC tại H,AH =12cm BH=5cm . hãy tính chu vi tam giác ABC
bài 2 :
tam giác ABC có AC=20cm dựng AH vuông góc vs BC tại H,HC=16cm BH=9cm . hãy tính chu vi tam giác ABC
tam giác AHB vuông tại H ,THEO ĐỊNH LÝ PYTA GO TA CÓ
AB^2=AH^2+BH^2=>AB^2=169=>AB=13 CM
TAM GIÁC AHC VUÔNG TẠI H,THEO ĐỊNH LÝ PYTA GO TA CÓ
HC^2+AH^2=AC^2=>HC^2=AC^2-AH^2=>HC^2=256=>HC=16CM
VÌ H NẰM GIỮA BC => BC=BH+HC=21 CM
=>CHU VI TAM GIÁC ABC LÀ
AB+AC+BC=13+21+20=54 CM
Cho tam giác ABC vuông tại A. Vẽ AH vuôn góc với BC tại A. Vẽ AH vuông góc với BC tại H. Trên BC lây K sao cho BK=BA, trên AC lấy I sao cho AI=AH
a) CM: ABK cân
b) CM: góc BAH = ACB
c) CM: góc HAK = góc KAI
d) CM: AC vuông góc KI
e) CM: BC - AB > AC - AH
f) CM: AH + BC > AB + AC