a, A= \(\left(15x+2y\right)-\left[\left(2x+3\right)-\left(5x+y\right)\right]\) tại x=1 ; y= -1
b, B= -\(\left(12x+3y\right)+\left(5x-2y\right)-\left[13x+\left(2y+5\right)\right]\) tại x= \(\frac{-1}{2}\); y= \(\frac{1}{7}\)
phân tích đa thức sau thành nhân tử
a.\(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)
b.\(3\left(x-y\right)-5x\left(y-x\right)\)
a.
\(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)
\(=\left(x-2y\right)\left(5x^2-15x\right)\)
\(=5x\left(x-2y\right)\left(x-3\right)\)
b.
\(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
\(a,5x^2\left(x-2y\right)-15x\left(x-2y\right)\)
\(=5x\left(x-2y\right)\left(x-3\right)\)
\(b,3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
Chúc bạn học tốt!
a) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=\left(x-2y\right)\left(5x^2-15x\right)=\left(x-2y\right)5x\left(x-3\right).\)
\(b.3\left(x-y\right)-5\left(y-x\right)=3\left(x-y\right)+5\left(x-y\right)\)
\(=\left(3+5\right)\left(x-y\right)=8\left(x-y\right)\)
thực hiện phép tính;
a,\(\dfrac{\left(3a^2b\right)^3\left(ab^3\right)^2}{\left(a^2b^2\right)^4}\)
b,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
c,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
d,\(\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
GIÚP MÌNH VỚI!
Rút gọn phân thức:
a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}\)
b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}\)
c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\)
d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}\)
j) \(\frac{6x^2y^2}{8xy^5}\)
a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)
b)\(=\frac{3x\left(x+y\right)}{y}\)
c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)
b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)
c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)
h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)
j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)
Câu b) bạn xem lại nhé.
Học tốt ^3^
Phân tích các đa thức sau thành nhân tử:
a) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)
b) \(3\left(x-y\right)-5x\left(y-x\right)\)
a) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=\left(5x^2-15x\right)\left(x-2y\right)=5x\left(x-3\right)\left(x-2y\right)\)
b) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)=\left(3+5x\right)\left(x-y\right)\)
thực hiện phép tính
a.\(5x^2-3x\left(x+2\right)\)
b.\(3x\left(x-5\right)-5x\left(x+7\right)\)
c.\(3x^2y.\left(2x^2-y\right)-2x^2.\left(2x^2y-y^2\right)\)
d.\(3x^2.\left(2y-1\right)-\left[2x^2.\left(5y-3\right)-2x.\left(x-1\right)\right]\)
e.\(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
f.\(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
Rút gọn rồi tính giá trị của biểu thức:
a) \(E=x\left(x-y\right)+y\left(x+y\right)\) tại \(x=\frac{-1}{2};y=3\)
b) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\) tại \(x=15\)
c) \(B=5x \left(x-4y\right)-4y\left(y-5x\right)\) tại \(x=\frac{1}{5};y=\frac{-1}{2}\)
d) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\) tại \(x=\frac{1}{2};y=2\)
e) \(D=\left(y^2+2\right)\left(y-4\right)-\left(2y^2+1\right)\left(\frac{1}{2}y-2\right)\) tại \(y=2\)