Biết a+b+c=1 và \(0\le a\le b+1\le c+2\). Tìm GTNN của c
Cho \(a,b,c\)t/m \(0\le a\le b+1\le c+2\)và \(a+b+c=1\). Tìm a khi c đạt GTNN.
Cho 0\(\le\)a\(\le\)b\(\le\)c\(\le\)1
Tìm GTNN của Q = a2 (b - c) + b2 (c - b) + c2 ( 1 - c)
Cho 0\(\le\)a\(\le\)b\(\le\)c\(\le\)1
Tìm GTNN của Q = a2 (b - c) + b2 (c - b) + c2 ( 1 - c)
bài này điểm rơi hơi thộn, mò được ngay thì hơi khó :))
Áp dụng BĐT AM-GM ta có:
\(b^2\left(c-b\right)=\frac{1}{2}\cdot b\cdot b\left(2c-2b\right)\le\frac{1}{2}\left(\frac{b+b-2c-2b}{3}\right)^3=\frac{4c^3}{27}\)
Và \(a^2\left(b-c\right)\le0\). Khi đó
\(Q\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2-\frac{23}{27}c^3=c^2\left(1-\frac{23}{27}\cdot c\right)\)
\(=\frac{54^2}{23^2}c^2\left(1-\frac{23}{27}c\right)\le\frac{1}{3^3}\cdot\frac{54^2}{23^2}=\frac{108}{529}\)
Đẳng thức xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)
cho 3 số a,b,c thỏa mãn:0≤a≤b+1≤c+2 và a+b+c=1.tìm GTNN của c.
Ta có: \(a\le b+1\le c+2\)
\(\Rightarrow a+b+1+c+2\le3.\left(c+2\right)\)
\(\Rightarrow a+b+c+3\le3c+6.\)
Mà \(a+b+c=1\)
\(\Rightarrow1+3\le3c+6\)
\(\Rightarrow4\le3c+6\)
\(\Rightarrow-2\le3c\)
\(\Rightarrow-\frac{2}{3}\le c.\)
Hay \(c\ge-\frac{2}{3}\)
Dấu " = " xảy ra khi:
\(c=-\frac{2}{3}.\)
Vậy \(MIN_c=-\frac{2}{3}.\)
Chúc bạn học tốt!
Vì:0≤a≤b+1≤c+2 nên 0≤a+b+1+c+2≤c+2+c+2+c+2
=>0≤4≤3c+6(vì a+b+c=1)
Hay 3c≥-2=>c≥-2/3.
Vậy GTNN của c là:-2/3 khi đó a+b=5/3.
Cho 4 số a,b,c,d thỏa mãn \(0\le a+1\le b+10\le c+2014\le d+2017\)và \(a+b+c+d=4042\)
Tìm \(GTNN\)của \(d\)
Ta có
(a+1)+(b+10)+(c+2014)+(d+2017)\(\le\) 4(d+2017) ( phần này tự lập luận nhé, cũng dễ mà)
=> (a+b+c+d)+(1+10+2014+2017)\(\le\) 4(d+2017)
=> 4042+4042\(\le\) 4(d+2017)
=>8084\(\le\) 4(d+2017)
=> \(2021\le d+2017\)
=> \(4\le d\)
Vậy GTNN của d là 4
k cho mình nhé bạn bạn k mình 1 k mình k bạn 3 k nhé
Cho ba số a,b,c thỏa mãn :\(0\le a\le b+1\le c+2\)và a+b+c=1. Tìm giá trị nhỏ nhất của c
xcnhbhjdfb chjb
jckxb nxcnmrehjvsbn
cbjdbfvcm bjkdfbgfmjn
cac tiensadfuhdfifbhkdsfsgjfdh
gfjhhgjhffggggggggggggggggggggggggggggggh
Cho 3 số a,b,c thõa mãn: \(0\le a\le b+1\le c+2\)và a + b + c = 1. Tìm giá trị nhỏ nhất của c.
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a=b +1 =c+2 <=> a=1, b=0, c=1
=> Giá trị nhỏ nhất của c = -1
bạn kia tên giống bạn đặt câu hỏi thế
chắc đang thể hiện sự t.h.ô.n.g.m.i.n.h của mình
Cho a,b,c thỏa mãn \(0\le a\le b+1\le c+2\)và a+b+c=1. Tìm giá trị lớn nhất của c.
Cho các số a,b,c>0 và a+b+c\(\le\dfrac{3}{2}\).Tìm GTNN của biểu thức
\(Q=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
\(=\left(1^2+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)\ge\left(1a+4.\dfrac{1}{b}\right)^2\\ \Rightarrow\sqrt{a^2+\dfrac{1}{vb^2}}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\)
Tương tự
\(\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\\ \sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\\ Do.đó:\\ Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)\ge\dfrac{1}{\sqrt{17}}\\ \left(a+b+c+\dfrac{36}{a+b+c}\right)\)
\(=\dfrac{1}{\sqrt{17}}\\ \left[a+b+c+\dfrac{9}{4\left(a+b+c\right)}+\dfrac{135}{4\left(a+b+c\right)}\right]\\ \ge\dfrac{3\sqrt{17}}{2}\)