Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Đức Huy

Cho các số a,b,c>0 và a+b+c\(\le\dfrac{3}{2}\).Tìm GTNN của biểu thức

\(Q=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

☆Châuuu~~~(๑╹ω╹๑ )☆
5 tháng 2 2022 lúc 8:20

\(=\left(1^2+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)\ge\left(1a+4.\dfrac{1}{b}\right)^2\\ \Rightarrow\sqrt{a^2+\dfrac{1}{vb^2}}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\) 

Tương tự

\(\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\\ \sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\\ Do.đó:\\ Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)\ge\dfrac{1}{\sqrt{17}}\\ \left(a+b+c+\dfrac{36}{a+b+c}\right)\) 

\(=\dfrac{1}{\sqrt{17}}\\ \left[a+b+c+\dfrac{9}{4\left(a+b+c\right)}+\dfrac{135}{4\left(a+b+c\right)}\right]\\ \ge\dfrac{3\sqrt{17}}{2}\)


Các câu hỏi tương tự
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Hi Mn
Xem chi tiết
Vũ Thanh Lương
Xem chi tiết
Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Vi Thị Hòa
Xem chi tiết
hiền nguyễn
Xem chi tiết
S U G A R
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết