Viêt Thanh Nguyễn Hoàn...

Cho a,b,c >0 và \(ab+bc+ca=1\\\)

Tìm GTLN của biểu thức :

\(Q=\dfrac{1-a^2}{1+a^2}+\dfrac{1-b^2}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)

Trần Minh Hoàng
28 tháng 5 2021 lúc 15:25

Áp dụng bđt Cauchy - Schwarz ta có:\(Q=\dfrac{2-2a^2b^2}{\left(1+a^2\right)\left(1+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(1-ab\right)\left(1+ab\right)}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(bc+ca\right)\left(1+ab\right)}{\left(a+b\right)^2\left(b+c\right)\left(c+a\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c\left(1+ab\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2c\left(1+ab\right)}{\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}\le\dfrac{2c\left(1+ab\right)}{\sqrt{\left(ab+1\right)^2\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c}{\sqrt{c^2+1}}+\dfrac{2}{\sqrt{c^2+1}}=\dfrac{2\left(c+1\right)}{\sqrt{c^2+1}}\le\dfrac{2\left(c+1\right)}{\sqrt{\dfrac{\left(c+1\right)^2}{2}}}=2\sqrt{2}\)Dấu "=" xảy ra khi a = b = \(\sqrt{2}-1;c=1\).

Vậy..

Bình luận (0)

Các câu hỏi tương tự
Cấn Minh Khôi
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
hello7156
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Lê Song Phương
Xem chi tiết
Phạm Tiến Minh
Xem chi tiết
Hoang Tran
Xem chi tiết
hiền nguyễn
Xem chi tiết
Vũ Thanh Lương
Xem chi tiết