Tìm GTLN: a) —x^2—4x+9
b) x(6—x)+74+x
c) 5x—x^2
Tìm giá trị lớn nhất của:
a. Q = -x2 - 4x + 9
b. M = x(6-x) +74+x
c. 5x - x2
a) Q=13-(x^2+4x+4)=13-(x+2)^2<=13 Qmax=13 khi x=-2
b) M=\(6x-x^2+74+x=74-\left(x^2+7x\right)=74-\left(x^2-2.\frac{7}{2}x+\left(\frac{7}{2}\right)^2\right)^{^2}-\left(\frac{7}{2}\right)^2\\ \)
\(\frac{74\cdot4-49}{4}-\left(x-\frac{7}{2}\right)^2\le\frac{74\cdot4-49}{4}=M_{max}\)đảng thức khi x=7/2
C) \(P=\frac{25}{4}-\left(x^2-2.\frac{5}{2}+\left(\frac{5}{2}\right)^2\right)=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}=P_{max}\) khi x=5/2
cho \(M=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a) Tìm ĐKXĐ và rút gọn M
b) Tìm x thuộc Z để M đạt GTLN
\(M=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(M=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)
\(M=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{6}{x+2}\right)\)
a) dkxd : x khac {0;1;-2)
\(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right).\left(\dfrac{x+2}{6}\right)\)
\(M=\left(\dfrac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x-1\right)\left(x+2\right)}\right).\left(\dfrac{x+2}{6}\right)=\dfrac{-6}{6\left(x-2\right)}=\dfrac{1}{2-x}\)
b)
GTLN M =1 khi x =1
Tìm GTNN của
a) A = x² - 5x + 6
b) B = x² - 4x + y² - 8y + 6
c) N = (x-1)(x+2)(x+3)(x+6)
a: \(A=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{1}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=5/2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu '=' xảy ra khi x=2 và y=4
Bài 6:Tìm GTLN,GTNN (nếu có) trong các biểu thức sau:
a)A=-4-x^2+6x
b)B=3x^2-5x+7
c)C=/x-3/(2-/x-3/)
d)D=(x-1)(x+5)(x^2+4x+5)
e)E=-x^2-4x-y^2+2y
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Tìm GTLN của :
A = - | x2 - 25 | + 20
B = 2 - 5x2 / 4x2 + 7
C = 2015 / | x - 1 | + 2016
Giúp mình nhé :)
tìm GTLN
a) A= 5x-x^2
b) B= x-x^2
c) C= 4x-x^2+3
Giúp mình với các bạn ơi!
Câu 1:Tìm GTLN của các biểu thức sau:
a/ A=3-(2x-1)2 b/ B=4x-x2 +2 c/ C=2/x2-4x+9 d/ D=5x2 +21/x2+3
Câu 2: Tìm GTNN của:
a/ A= (x-1)(x+2)(x+3)(x+6)+2042 b/ B=(x-1)(x-4)(x-5)(x-8)+2006
2) a) Đặt \(\left(x-1\right)\left(x+6\right)=t\)
\(\Leftrightarrow x^2+5x-6=t\)
\(\left(x+2\right)\left(x+3\right)=x^2+5x+6=t+12\)
\(A=t\left(t+12\right)+2042\)
\(A=t^2+12t+2042\)
\(A=\left(t+6\right)^2-6^2+2042\)
\(A=\left(t+6\right)^2+2006\)
\(\left(t+6\right)^2\ge0\Rightarrow\left(t+6\right)^2+2006\ge2006\)
\(Min_A=2006\) khi \(\left(t+6\right)^2=0\Leftrightarrow t=-6\Leftrightarrow x^2+5x-6=-6\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy: MinA=2006 khi x=0 hoặc x=5
Bài 2b làm tương tự
a,Tìm GTNN:
x^2+5y^2+2xy-4x-8y+2015
b,Tìm GTLN:
3(x+1)/x^3+x^2+x+1
\(a,x^2+5y^2+2xy-4x-8y+2015\)
\(=\left(x^2+y^2+2xy\right)-4\left(x+2y\right)+4+4y^2-4y+1+2015=\left[\left(x+y\right)^2-4\left(x+2y\right)+4\right]+\left(4y^2-4y+1\right)+2015\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\)
Do.....
Nên .....
Vậy MIN = 2010 <=> x = 3/2; y = 1/2
P/S: nhương người đi sau
\(\)