Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Linh Chi
Xem chi tiết
Hứa Minh Thư
Xem chi tiết
hằng trần
Xem chi tiết
Nhi Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 10 2020 lúc 20:30

1.

Bạn xem lại đề, \(sin^2x\left(\frac{x}{2}-\frac{\pi}{4}\right)\) là sao nhỉ?Có cả x trong lẫn ngoài ngoặc?

2.

ĐKXĐ: \(sinx\ne0\)

\(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 10 2020 lúc 20:35

3.

Theo điều kiện của pt lượng giác bậc nhất:

\(m^2+\left(3m+1\right)^2\ge\left(1-2m\right)^2\)

\(\Leftrightarrow10m^2+6m+1\ge4m^2-4m+1\)

\(\Leftrightarrow3m^2+5m\ge0\Rightarrow\left[{}\begin{matrix}m\ge0\\m\le-\frac{5}{3}\end{matrix}\right.\)

4.

\(\Leftrightarrow1-sin^2x-\left(m^2-3\right)sinx+2m^2-3=0\)

\(\Leftrightarrow-sin^2x-m^2sinx+2m^2+3sinx-2=0\)

\(\Leftrightarrow\left(-sin^2x+3sinx-2\right)+m^2\left(2-sinx\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2-sinx\right)+m^2\left(2-sinx\right)=0\)

\(\Leftrightarrow\left(2-sinx\right)\left(sinx-1+m^2\right)=0\)

\(\Leftrightarrow sinx=1-m^2\)

\(\Rightarrow-1\le1-m^2\le1\)

\(\Rightarrow m^2\le2\Rightarrow-\sqrt{2}\le m\le\sqrt{2}\)

Khách vãng lai đã xóa
Trần Khánh Huyền
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 9 2020 lúc 19:40

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\) \(\Rightarrow2sinx.cosx=t^2-1\)

Do \(x\in\left[0;\frac{\pi}{2}\right]\Rightarrow x+\frac{\pi}{4}\in\left[\frac{\pi}{4};\frac{3\pi}{4}\right]\) \(\Rightarrow\frac{\sqrt{2}}{2}\le sin\left(x+\frac{\pi}{4}\right)\le1\)

\(\Rightarrow1\le t\le\sqrt{2}\)

Pt trở thành: \(m\left(t+1\right)=t^2\Leftrightarrow m=\frac{t^2}{t+1}\)

Xét \(f\left(t\right)=\frac{t^2}{t+1}\) trên \(\left[1;\sqrt{2}\right]\)

\(f\left(t\right)-\frac{1}{2}=\frac{t^2}{t+1}-\frac{1}{2}=\frac{\left(t-1\right)\left(2t+1\right)}{2\left(t+1\right)}\ge0\Rightarrow f\left(t\right)\ge\frac{1}{2}\)

\(f\left(t\right)-2\sqrt{2}+2=\frac{t^2}{t+1}-2\sqrt{2}+2=\frac{\left(t-\sqrt{2}\right)\left(t+2-\sqrt{2}\right)}{t+1}\le0\Rightarrow f\left(t\right)\le2\sqrt{2}-2\)

\(\Rightarrow\frac{1}{2}\le m\le2\sqrt{2}-2\)

thị thanh xuân lưu
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:28

1.

Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?

2.

\(sin3x-4sinx.cos2x=0\)

\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)

\(\Leftrightarrow2sinx-sin3x=0\)

\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)

\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)

\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:33

3.

\(sin^2x.cosx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

4.

\(\sqrt{3}sin2x+1-cos2x=3\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:37

5.

Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)

6.

\(sinx+cosx-2sinx.cosx+1=0\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)

Pt trở thành:

\(t+1-t^2+1=0\)

\(\Leftrightarrow-t^2+t+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 9 2020 lúc 0:11

69.

\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)

\(\pi\le\frac{\pi}{4}+k2\pi\le2\pi\Rightarrow\frac{3}{8}\le k\le\frac{7}{8}\)

Không tồn tại k nguyên thỏa mãn nên pt có 0 nghiệm trên đoạn đã cho

70.

\(tan3x=tanx\Leftrightarrow3x=x+k\pi\Leftrightarrow x=\frac{k\pi}{2}\)

Kết hợp ĐKXĐ \(\Rightarrow x=k\pi\)

\(0< k\pi< 2018\pi\Rightarrow0< k< 2018\)

Có 2017 nghiệm

Nguyễn Việt Lâm
10 tháng 9 2020 lúc 0:12

72.

\(\Leftrightarrow sinx=m+1\)

Do \(-1\le sinx\le1\) nên pt có nghiệm khi và chỉ khi:

\(-1\le m+1\le1\)

\(\Leftrightarrow-2\le m\le0\)

73.

\(\Leftrightarrow cosx=m\)

Do \(-1\le cosx\le1\) nên pt vô nghiệm khi và chỉ khi: \(\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\)

nguyễn hoàng lê thi
14 tháng 9 2020 lúc 19:50

Cho mk hỏi sao lại là 2017 ạ ko phải 2018 sao ạ?

kien nguyentrung
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 10 2019 lúc 22:56

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=\frac{2m+1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{2m+1}{2}\)

Do \(x\in\left(-\frac{\pi}{6};\frac{5\pi}{6}\right)\Rightarrow x+\frac{\pi}{6}\in\left(0;\pi\right)\)

\(\Rightarrow0< sin\left(x+\frac{\pi}{6}\right)\le1\)

\(\Rightarrow0< \frac{2m+1}{2}\le1\)

\(\Rightarrow-\frac{1}{2}< m\le\frac{1}{2}\)

Kinder
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 16:02

a) Pt\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2xcos^2x\left(sin^2x+cos^2x\right)+3sinx.cosx-\dfrac{m}{4}+2=0\)

\(\Leftrightarrow1-\dfrac{3}{4}sin^22x-\dfrac{3}{2}sin2x-\dfrac{m}{4}+2=0\)

\(\Leftrightarrow-3sin^22x-6sin2x-m+12=0\)

Đặt \(t=sin2x;t\in\left[-1;1\right]\)

Pttt: \(-3t^2-6t-m+12=0\)

\(\Leftrightarrow-3t^2-6t+12=m\) (1)

Đặt \(f\left(t\right)=-3t^2-6t+12;t\in\left[-1;1\right]\) 

Vẽ BBT sẽ tìm được \(f\left(t\right)_{min}=3;f\left(t\right)_{max}=15\)\(\Leftrightarrow3\le f\left(t\right)\le15\)\(\Rightarrow m\in\left[3;15\right]\) thì pt (1) sẽ có nghiệm

mà \(m\in Z\) nên tổng m nguyên để pt có nghiệm là 13 m

Vậy có tổng 13 m nguyên

Lê Thị Thục Hiền
5 tháng 7 2021 lúc 16:13

b) Pt\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(1\right)\\2cos^2x-\left(2m+1\right)cosx+m=0\left(2\right)\end{matrix}\right.\)

Từ (1)\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)

\(x\in\left[0;2\pi\right]\Rightarrow0\le\dfrac{\pi}{2}+k2\pi\le2\pi\)\(\Leftrightarrow-\dfrac{1}{4}\le k\le\dfrac{3}{4}\)\(\Rightarrow k=0\)

Tại k=0\(\Rightarrow x=\dfrac{\pi}{2}\)

Để pt ban đầu có 4 nghiệm pb \(\in\left[0;2\pi\right]\)

\(\Leftrightarrow\) Pt (2) có 3 nghiệm pb khác \(\dfrac{\pi}{2}\)

Xét pt (2) có: \(2cos^2x-\left(2m+1\right)cosx+m=0\)

Vì là phương trình bậc hai ẩn \(cosx\) nên pt (2) chỉ có nhiều nhất ba nghiệm \(\Leftrightarrow\) Pt (2) có một nghiệm cosx=0

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) mà \(x\ne\dfrac{\pi}{2}\)

\(\Rightarrow\) Pt (2) chỉ có nhiều nhất hai nghiệm

\(\Rightarrow\) Pt ban đầu không thể có 4 nghiệm phân biệt

Vậy \(m\in\varnothing\)