tinh n=1/1x2x3x4+1/2x3x4x5+.....+1/(n-1)nx(n+1)x(n+2)
Tính giá trị của biểu thức sau:
S=1x2x3x4 + 2x3x4x5 + 3x4x5x6 + .......+n x ( n+1) x (n+2) x (n+3) với n = 50
S=1x2x3x4 + 2x3x4x5 + 3x4x5x6 + .......+n x ( n+1) x (n+2) x (n+3)
4S = 1.2.3.4.(5-1) + 2.3.4.5.(6-2) + ...... + n(n + 1)(n+2)(n+3)[(n + 4) - n]
4S = 1.2.3.4.5 - 1.2.3.4.5 + 2.3.4.5.6 - 2.3.4.5.6 + ..... + n(n+1)(n+2)(n+3)(n + 4)
4S = n( n+1)(n+2)(n+3)
S =\(\frac{\text{n( n+1)(n+2)(n+3)}}{4}\)
Rút gọn và tính giá trị của biểu thức sau: S=1x2x3x4 + 2x3x4x5 + 3x4x5x6 + .......+n x ( n+1) x (n+2) x (n+3) với n = 50
Tính giá trị của biểu thức sau:
S=1x2x3x4 + 2x3x4x5 + 3x4x5x6 + .......+n x ( n+1) x (n+2) x (n+3) với n = 50
bn vào toán online math có đó mk giải trên đó rồi h ko muốn ghi lại nha
1)tính
A=1^2+3^2+5^2+...+(2n-1)^2
B=1^3+3^3+5^3+...+(2n-1)^3
2)tính
A=1x2x3x4+2x3x4x5+...(n-2)x(n-1)
3)tính
B=1x2x4+2x3x5+...+n(n+1)x(n+3)
4)tính
C=2^2+5^2+8^2+...+(3n-1)^2
5)tính
D=1^4+2^4+3^4+...+n^4
GIÚP MÌNH VỚI MÌNH CẦN GẤP
LÀM ĐƯỢC MÌNH CHO 5 SAO
NHANH LÊN NHÉ
C= 1/1x2x3x4+1/2x3x4x5+....+1/97x98x99x100
\(3xC=\frac{3}{1x2x3x4}+\frac{3}{2x3x4x5}+...+\frac{3}{97x98x99x100}\)
\(3xC=\frac{4-1}{1x2x3x4}+\frac{5-2}{2x3x4x5}+...+\frac{100-97}{97x98x99x100}\)
\(3xC=\frac{1}{1x2x3}-\frac{1}{2x3x4}+\frac{1}{2x3x4}+\frac{1}{3x4x5}+...+\frac{1}{97x98x99}-\frac{1}{98x99x100}\)
\(3xC=\frac{1}{1x2x3}-\frac{1}{98x99x100}\Rightarrow C=\frac{\frac{1}{6}-\frac{1}{98x99x100}}{3}\)
cách tính bài : B = 1/1x2x3x4 + 1/2x3x4x5+ ... + 1/27x28x29x30
\(3B=\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+...+\dfrac{3}{27\cdot28\cdot29\cdot30}\)
\(=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29}-\dfrac{1}{28\cdot29\cdot30}\)
\(=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{28\cdot29\cdot30}\)
\(=\dfrac{1353}{8120}\)
=>B=451/8120
chứng minh rằng
a. nx(n+3)x(n+7)x(n+11)x(n+14) chia hết cho 5 với mọi n thuộc N
b. nx(n+1)x(n+5) chia hết cho 3 với mọi n thuộc N
c. nx(n+10)x(n+14) chia hết cho 3 với n thuộc N
d. nx(n-1)x(n+1)x(5+3)xnx97 chia hết cho 3 với n thuộc N*
Bằng phương pháp quy nạp, chứng minh các đẳng thức sau với \(n\in N^{\circledast}\)
a) \(A_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)}\)
b) \(B_n=1+3+6+10+...+\dfrac{n\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\)
c) \(S_n=\sin x+\sin2x+\sin3x+...+\sin nx=\dfrac{\sin\dfrac{nx}{2}\sin\dfrac{\left(n+1\right)x}{2}}{\sin\dfrac{x}{2}}\)
b)
Với n = 1.
\(VT=B_n=1;VP=\dfrac{1\left(1+1\right)\left(1+2\right)}{6}=1\).
Vậy với n = 1 điều cần chứng minh đúng.
Giả sử nó đúng với n = k.
Nghĩa là: \(B_k=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(B_{k+1}=\dfrac{\left(k+1\right)\left(k+1+1\right)\left(k+1+2\right)}{6}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Thật vậy:
\(B_{k+1}=B_k+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Vậy điều cần chứng minh đúng với mọi n.
c)
Với \(n=1\)
\(VT=S_n=sinx\); \(VP=\dfrac{sin\dfrac{x}{2}sin\dfrac{2}{2}x}{sin\dfrac{x}{2}}=sinx\)
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\).
Ta cần chứng minh nó đúng với \(n=k+1\):
Nghĩa là: \(S_{k+1}=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}\).
Thật vậy từ giả thiết quy nạp ta có:
\(S_{k+1}-S_k\)\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}-\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.\left[sin\dfrac{\left(k+2\right)x}{2}-sin\dfrac{kx}{2}\right]\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.2cos\dfrac{\left(k+1\right)x}{2}sim\dfrac{x}{2}\)\(=2sin\dfrac{\left(k+1\right)x}{2}cos\dfrac{\left(k+1\right)x}{2}=2sin\left(k+1\right)x\).
Vì vậy \(S_{k+1}=S_k+sin\left(k+1\right)x\).
Vậy điều cần chứng minh đúng với mọi n.
Tính tổng cấp số nhân sau: \(x^2-x^3+x^4-x^5+...+\left(-1\right)^nx^n+...\) (với \(\left|x\right|< 1\) và n\(\ge\)2, n thuộc N)
Xét dãy \(\left(u_n\right)\) là cấp số nhân có \(\left\{{}\begin{matrix}u_1=x^2\\q=-x\end{matrix}\right.\)
\(S=x^2-x^3+x^4-x^5+...+\left(-1\right)^nx^n+...=\dfrac{x^2}{1-\left(-x\right)}=\dfrac{x^2}{x+1}\)