\(3B=\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+...+\dfrac{3}{27\cdot28\cdot29\cdot30}\)
\(=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29}-\dfrac{1}{28\cdot29\cdot30}\)
\(=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{28\cdot29\cdot30}\)
\(=\dfrac{1353}{8120}\)
=>B=451/8120