Tìm x : \(\left(2-x\right):\left\{\frac{m^2-a^2}{m^3+a^3}.\left[\left(m-\frac{m^2+a^2}{a}\right):\left(\frac{1}{m}-\frac{1}{a}\right)\right]\right\}=1\)
Tìm x : \(\left(2-x\right):\left\{\frac{m^2-a^2}{m^3+a^3}.\left[\left(m-\frac{m^2+a^2}{a}\right)\div\left(\frac{1}{m}-\frac{1}{a}\right)\right]\right\}=1\)
Giải các hệ phương trình
\(\left\{{}\begin{matrix}\frac{1}{x+1}+\frac{1}{y}=\frac{1}{3}\\\frac{1}{\left(x+1\right)^2}-\frac{1}{y^2}=\frac{1}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+m\right)^2-y^2+y\left(x+m\right)=11\\x+2y=7-m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+a\right)^2+2\left(y-a\right)^2-\left(x+a\right)\left(y-a\right)=2\\x+y=2\end{matrix}\right.\)
cho M=\(\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
a,Rút gọn M
b,cho x>0 tìm GTNN của M
a/ Đặt: \(x+\frac{1}{x}=a\)
Ta có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)=a^3-3a\)
\(x^6+\frac{1}{x^6}=\left(x^3+\frac{1}{x^3}\right)^2-2=\left(\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)\right)^2-2\)
\(=\left(a^3-3a\right)^2-2\)
\(\Rightarrow M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\frac{a^6-\left(a^3-3a\right)^2+2-2}{a^3+a^3-3a}\)
\(=\frac{\left(a^3+a^3-3a\right)\left(a^3-a^3+3a\right)}{\left(a^3+a^3-3a\right)}=3a\)
\(=3.\left(x+\frac{1}{x}\right)=\frac{3x^2+3}{x}\)
b/ \(\frac{3x^2+3}{x}=3x+\frac{3}{x}\ge2.3=6\)
Đấu = xảy ra khi \(x=\frac{1}{x}\Leftrightarrow x=1\)
a) Tìm m để pt \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\) có 4 nghiệm thỏa: \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
b) Tìm các số \(a,b,c\ge0\)sao cho: \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
Giúp mk vs ạ!
1)Cho M(x)=\(1-\frac{1}{2^2}+\frac{2}{3^2}-\frac{3}{4^2}+......+\left(-1\right)^{x+1}\frac{x-1}{x^2}\)
Tính M(3) M(6) M(20) M(25) M(30)
2)Tính:
A=\(\left(1-\frac{2}{1.2.3}\right)^4+\left(3-\frac{5}{2.3.4}\right)^4+\left(5-\frac{10}{3.4.5}\right)^4+......+\left(59-\frac{901}{30.31.32}\right)^4\)
B1 Tính
\(\frac{x^3+125}{3x-9}.\frac{3-x}{x^2-5x+25}\)
B2 : Cho abc = 1. Tính M-N
\(M=\left(a+\frac{1}{a}\right)^2\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)2\)
\(N=\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)\)
viết lại pt dưới dạng thần thánh
\(x^2-\frac{2mx}{\left(m-1\right)}+\frac{\left(c+1\right)}{4\left(m-1\right)}=0.\)
\(\left(x^2-\frac{2mx}{\left(m-1\right)}+\frac{m^2}{\left(m-1\right)^2}\right)+\frac{\left(c+1\right)}{4\left(m-1\right)}-\frac{m^2}{\left(m-1\right)^2}=0\)
\(\left(x-\frac{m}{\left(m-1\right)}\right)^2=\frac{4m^2-\left(c+1\right)\left(m-1\right)}{4\left(m-1\right)^2}\)
vậy pt có 2 nghiệm phân biệt :
\(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{m}{m-1}\right)=\sqrt{\frac{4m^2-\left(c+1\right)\left(m-1\right)}{4\left(m-1\right)^2}}\\\left(x-\frac{m}{m-1}\right)=-\sqrt{\frac{4m^2-\left(c+1\right)\left(m-1\right)}{4\left(m-1\right)^2}}\end{cases}}\) " sủa lên nào em
Tìm các số A,B,C để có
a, \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
b, \(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx}{x^2+1}\)
Tham khảo nhé bạn:
Chúc bạn học tốt!
Tìm các số A , B , C để có
a) \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
b) \(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\)