Cho biểu thức A = / 2x - 5 / -x
a , Rút gọn A
b , Tìm x để A bằng x
Cho biểu thức :
A= x^2+2x/2x+10 + x−5/x + 50−5x/2x(x+5)
a) Tìm điều kiện của biến x để giá trị của biểu thức được xác định
b) rút gọn biểu thức A
c)Tìm giá trị của x để giá trị của biểu thức bằng 1
d)tính A - x/1-x
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
Cho biểu thức: A = x+5/2x – x-6/5-x – 2x^2-2x-50/2x^2-10x
a) Rút gọn biểu thức A
b) Tìm x biết A = 1/3
a: \(A=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
b: Để A=1/3 thì x-5/2x=1/3
=>3x-15=2x
=>x=15
chọn biểu thức A=(x+5)(4-3x)-(3x+2)^2+(2x+1)^3-(2x-1)(4x^2+2x+1)
a)Rút gọn biểu thức A
b)Tính giá trị của A khi x=-3
c)tìm x để A=0
a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)
\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)
\(=-17x+18\)
Cho biểu thức: B=x^2+2x/2x+10+x-5/x+50-5x/2x(x+5)
a. Tìm điều kiện xác định của B.
b. Rút gọn biểu thức B.
c. Tìm x để B = 1.
cho biểu thức A=\(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}+\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
a) Tìm điều kiện xác định và rút gọn A
b) Tìm x để A>0
\(a,A=\dfrac{x+1+2-2x+5-x}{\left(1-x\right)\left(x+1\right)}\cdot\dfrac{\left(1-x\right)\left(x+1\right)}{2x-1}\left(x\ne1;x\ne-1;x\ne\dfrac{1}{2}\right)\\ A=\dfrac{8-2x}{2x-1}\\ b,A>0\Leftrightarrow\dfrac{8-2x}{2x-1}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-2x>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-2x< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 4\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x< 4\\x\in\varnothing\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x< 4\)
\(\left[\dfrac{2x}{x+3}+\dfrac{8}{x-3}\dfrac{2x+12}{x^2-9}\right].\dfrac{x+3}{x^2+6}\) với x ≠ (+-3)
a. Rút gọn biểu thức A
b. Tìm giá trị của x để biểu thức A có giá trị = 5
\(a,A=\dfrac{2x\left(x-3\right)+8\left(x+3\right)-2x-12}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x^2+6}\\ A=\dfrac{2x^2-6x+8x+24-2x-12}{\left(x-3\right)}\cdot\dfrac{1}{x^2+6}\\ A=\dfrac{2x^2+12}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2\left(x^2+6\right)}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2}{x-3}\)
\(b,A=5\Leftrightarrow\dfrac{2}{x-3}=5\Leftrightarrow5x-15=2\Leftrightarrow x=\dfrac{17}{5}\)
Cho biểu thức A =(\(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\)):\(\dfrac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn A
b) Tìm giá trị của A biết |x-5|=2
c) Tìm x∈Z để A⋮ 4
a) đk: x khác 0;2;-2;3
A = \(\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
= \(\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}-\dfrac{2-x}{2+x}\right):\dfrac{x-3}{2x-x^2}\)
= \(\left(\dfrac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\dfrac{x-3}{x\left(2-x\right)}\)
= \(\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)
= \(\dfrac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)
= \(\dfrac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}=\dfrac{4x^2}{x-3}\)
b) Có \(\left|x-5\right|=2\)
<=> \(\left[{}\begin{matrix}x-5=2< =>x=7\left(Tm\right)\\x-5=-2< =>x=3\left(L\right)\end{matrix}\right.\)
Thay x = 7 vào A, ta có:
\(A=\dfrac{4.7^2}{7-3}=49\)
c) A = \(\dfrac{4x^2}{x-3}⋮4\left(\forall x\right)\)
Cho biểu thức A=\(\dfrac{x^2+x}{x^2-2x+1}:\)(\(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\))
a) Rút gọn A
b) Tính giá trị của A khi |2x-5|=3
c) Tìm x để A = 4
d) Tìm x để A<2
e) Tìm xϵZ để AϵZ
f) Tìm x ϵ Z để A∈ N
g) Với x > 1 . CHứng minh rằng A>1 ∀ x
a) đk: x khác 0;1
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)
= \(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)
= \(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
= \(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b) Để \(\left|2x-5\right|=3\)
<=> \(\left[{}\begin{matrix}2x-5=3< =>2x=8< =>x=4\left(c\right)\\2x-5=-3< =>2x=2< =>x=1\left(l\right)\end{matrix}\right.\)
Thay x = 4 vào A, ta có:
\(A=\dfrac{4^2}{4-1}=\dfrac{16}{3}\)
c) Để A = 4
<=> \(\dfrac{x^2}{x-1}=4\)
<=> \(\dfrac{x^2}{x-1}-4=0< =>\dfrac{x^2-4x+4}{x-1}=0\)
<=> \(\left(x-2\right)^2=0\)
<=> x = 2 (T/m)
d) Để A < 2
<=> \(\dfrac{x^2}{x-1}< 2< =>\dfrac{x^2}{x-1}-2< 0< =>\dfrac{x^2-2x+2}{x-1}< 0\)
<=> \(\dfrac{\left(x-1\right)^2+1}{x-1}< 0\)
Mà \(\left(x-1\right)^2+1>0\)
<=> x - 1 < 0 <=> x < 1
KHĐK: x < 1 ( x khác 0)
e) Để A thuộc Z
<=> \(\dfrac{x^2}{x-1}\in Z\)
<=> \(x^2⋮x-1\)
<=> \(x^2-x\left(x-1\right)-\left(x-1\right)⋮x-1\)
<=> \(1⋮x-1\)
Ta có bảng:
x-1 | 1 | -1 |
x | 2 | 0 |
T/m | T/m |
KL: Để A thuộc Z <=> \(x\in\left\{2;0\right\}\)
f) Để A thuộc N <=> \(x\in\left\{2;0\right\}\)