Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lalalalalaalaa
Xem chi tiết
Nguyễn Trọng Chiến
17 tháng 2 2021 lúc 17:51

Do M là điểm chính giữa của cung AB \(\Rightarrow MA=MB\)  (1)

Ta có \(\Lambda MAN=\Lambda MAB=\dfrac{1}{2}sđcungMB\) (\(\Lambda\) kí hiệu góc)

\(\Lambda MBC=\dfrac{1}{2}sđcungMB\) \(\Rightarrow\Lambda MAN=\Lambda MBC\)(2)

\(\Lambda AMN\) là góc chắn đường kính AB \(\Rightarrow\Lambda AMB=90^0\Rightarrow\Lambda AMN+\Lambda NMB=90^0\) 

\(\Lambda NMC=90^0\Rightarrow\Lambda NMB+\Lambda BMC=90^0\) \(\Rightarrow\Lambda AMN=\Lambda BMC\)(3)

 

Từ (1) ,(2) và (3) \(\Rightarrow\Delta AMN=\Delta BMC\left(g.c.g\right)\)

Ngô Trần Thoại Thy
Xem chi tiết
Nguyễn Hoàng Tùng
20 tháng 12 2021 lúc 16:43

\(=24,5\)

Hoàng Hồ Thu Thủy
20 tháng 12 2021 lúc 16:44

= 24,5

Yuu Nguyen
20 tháng 12 2021 lúc 16:51

= 24,5

Lê Toàn Hiếu
Xem chi tiết
nguyễn văn nhật nam
Xem chi tiết
Trần Minh Hoàng
12 tháng 4 2021 lúc 21:43

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 21:48

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 21:50

47. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{\left(a+b\right)^2}{c}+\dfrac{\left(b+c\right)^2}{a}+\dfrac{\left(c+a\right)^2}{b}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+c}=\dfrac{\left[2\left(a+b+c\right)\right]^2}{a+b+c}=\dfrac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)(đpcm)

Đẳng thức xảy ra <=> a=b=c

Minh Anh
Xem chi tiết
nthv_.
13 tháng 10 2021 lúc 10:47

Bài 3:

Điện trở tương đương: \(R=\dfrac{U}{I}=\dfrac{30}{0,5}=60\Omega\)

Điện trở R1\(R_1=R-R_2=60-20=40\Omega\)

\(I=I_1=I_2=0,5A\left(R_1ntR_2\right)\)

Hiệu điện thế hai đầu mỗi điện trở:

\(U_1=R_1.I_1=40.0,5=20V\)

\(U_2=R_2.I_2=20.0,5=10V\)

nthv_.
13 tháng 10 2021 lúc 10:47

Bài 2:

a. Ý nghĩa:

- Điện trở định mức của biến trở con chạy là 100Ω

- Cường độ dòng điện định mức của biến trở con chạy là 2A.

b. HĐT lớn nhất: \(U=R.I=100.2=200V\)

c. Chiều dài dây dẫn: \(R=p\dfrac{l}{S}\Rightarrow l=\dfrac{R.S}{p}=\dfrac{100.2.10^{-6}}{0,5.10^{-6}}=400m\)

 

Mình Đăng Vũ
Xem chi tiết
Đạt Lê
6 tháng 3 2022 lúc 19:41

1. Định nghĩa hai tam giác bằng nhau

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết :

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

2. Các trường hợp bằng nhau của tam giác vuông

• Hai cạnh góc vuông

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (cạnh – góc – cạnh )

• Cạnh góc vuông và góc nhọn kề cạnh đó

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc )

• Cạnh huyền – góc nhọn

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc)

• Cạnh huyền – cạnh góc vuông

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

1. Định nghĩa hai tam giác bằng nhau

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết : Các trường hợp bằng nhau của hai tam giác hay, chi tiết

2. Các trường hợp bằng nhau của tam giác

a. Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh (c.c.c)

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

Xét Các trường hợp bằng nhau của hai tam giác hay, chi tiết có:

AB = A’B’

AC = A’C’

BC = B’C’

thì Các trường hợp bằng nhau của hai tam giác hay, chi tiết

b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c) 

b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c)

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

c. Trường hợp bằng nhau thứ ba của hai tam giác: góc – cạnh – góc

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

tik cho mình nha mình đc câu1 nè

soleil
Xem chi tiết
Nguyễn Thị Tuyết Nhung
2 tháng 7 2017 lúc 20:00

Kết bạn với mik nha!

Nguyễn Bảo Vương
2 tháng 7 2017 lúc 20:01

ok con tê tê

Tran thi Bich Ngoc
2 tháng 7 2017 lúc 20:02

mk kb roi nha

Đào Ngọc Phong
Xem chi tiết
Akai Haruma
30 tháng 10 2021 lúc 22:01

Bài 1:

a. $=2x(x-3)$

b. $=x^3(x+3)+(x+3)=(x^3+1)(x+3)=(x+1)(x^2-x+1)(x+3)$

c. $=64-(x^2-2xy+y^2)=8^2-(x-y)^2$

$=(8-x+y)(8+x-y)$

Akai Haruma
30 tháng 10 2021 lúc 22:02

Bài 2:

$(x+5)(x+1)+(x-2)(x^2+2x+4)-x(x^2+x-2)$

$=x^2+6x+5+(x^3-2^3)-(x^3+x^2-2x)$

$=x^2+6x+5+x^3-8-x^3-x^2+2x$

$=8x-3$

Ta có đpcm.

Akai Haruma
30 tháng 10 2021 lúc 22:03

Bài 4:

$P=a^3+a^2c-abc+b^2c+b^3$

$=a^2(a+c)-abc+b^2(b+c)$

$=a^2(-b)-abc+b^2(-a)=-a^2b-abc-b^2a$

$=-ab(a+c+b)=-ab.0=0$

Thanh Tô
Xem chi tiết
Thanh Tô
6 tháng 11 2021 lúc 16:49

Giúp mình nhé

Khách vãng lai đã xóa