Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Thư Trần
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 2 2021 lúc 16:45

Ta thấy : \(\left\{{}\begin{matrix}3^{100}=\left(3^4\right)^{25}\\9^{990}=\left(3^2\right)^{990}=3^{1980}=\left(3^4\right)^{495}\end{matrix}\right.\)

Thấy 34 có chữ số tận cùng là 1 .

=> (34)25 và ( 34)495 có chữ số tận cùng là 1 .

=> \(\left(3^4\right)^{25}+\left(3^4\right)^{495}\) sẽ có chữ số tận cùng là 2 .

\(\Rightarrow\left(3^4\right)^{25}+\left(3^4\right)^{495}⋮2\)

=> ĐPCM

Nguyễn Trọng Chiến
9 tháng 2 2021 lúc 16:47

Ta có \(3\equiv1\left(mod2\right)\) \(\Rightarrow3^{100}\equiv1^{100}\equiv1\left(mod2\right)\)

          9\(\equiv1\left(mod2\right)\) \(\Rightarrow9^{100}\equiv1^{100}\equiv1\left(mod2\right)\) 

\(\Rightarrow3^{100}+9^{100}\equiv1+1\equiv2\equiv0\left(mod2\right)\) 

\(\Rightarrow3^{100}+9^{100}⋮2\) Vậy...

pro2k7
9 tháng 2 2021 lúc 17:06

Có:

3100 lẻ,9990 lẻ

⇒3100 +9990 chẵn

⇒3100 +999 chia hết cho 2

 

duong le
Xem chi tiết
Kiều Vũ Linh
18 tháng 10 2023 lúc 10:14

Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰

= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)

= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)

= 3.4 + 3³.4 + ... + 3⁹⁹.4

= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4

Vậy A ⋮ 4

duong le
18 tháng 10 2023 lúc 10:25

.

Hai Nguyen Thu
Xem chi tiết
Akai Haruma
27 tháng 12 2021 lúc 23:11

Lời giải:
$B=3+(32+33+...+3100)$

$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$

Bạn xem lại đề.

Pham Ngoc Diep
Xem chi tiết
Lấp La Lấp Lánh
3 tháng 10 2021 lúc 17:47

\(B=3^0+3^1+3^2...+3^{100}\)

\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)

\(=3^0\times13+3^3\times13+...+3^{98}\times13\)

\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)

kazesawa sora
3 tháng 10 2021 lúc 17:52

B=30+31+32...+3100

=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)

=30×13+33×13+...+398×13

Nguyễn Phương Linh
Xem chi tiết
Nobita Kun
15 tháng 11 2015 lúc 17:13

a, A = 31 + 32 + 33 + 34 +...+ 399 + 3100

3A = 3(31 + 32 + 33 + 34 +...+ 399 + 3100)

3A = 32 + 33 + 34 + 35 +...+ 3100 + 3101

3A - A = (32 + 33 + 34 + 35 +...+ 3100 + 3101) - (31 + 32 + 33 + 34 +...+ 399 + 3100)

2A = 3101 - 31 = 3101 - 3

A = \(\frac{3^{101}-3}{2}\)

b, A = 31 + 32 + 33 + 34 +...+ 399 + 3100

A = (31 + 32 + 33 + 34) +...+ (397 + 398 + 399 + 3100)

A = (31 + 32 + 33 + 34)) +...+ 396(31 + 32 + 33 + 34)

A = 120 +...+ 396.120

A = 120(1 +...+ 396) chia hết cho 40 (ĐPCM)

trần như hoà
Xem chi tiết
Huỳnh Uyên Như
23 tháng 10 2015 lúc 10:50

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

Cao Đức Trọng
4 tháng 8 2021 lúc 8:54
Fikj Hrtui
Khách vãng lai đã xóa
Mika Yuuichiru
Xem chi tiết
Lê Thị Phương Nhung
25 tháng 9 2016 lúc 14:05

mình ko biết

nguyen khac hiep
5 tháng 2 2021 lúc 21:50

phải là chứng minh A chia hết cho 121

Khách vãng lai đã xóa
Nguyễn Thị Bích Ngọc
Xem chi tiết
Sawada Tsunayoshi
Xem chi tiết
Đỗ Lê Tú Linh
8 tháng 12 2015 lúc 21:35

a)Nếu n=2k(kEN)

thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)

Nếu n=2k+1(kEN)

thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)

Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2

b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n

Nếu n=2k(kEN )

thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................

tương tự, n=3k;3k+1;3k+2

mỏi tay chết đi được, mấy con số còn bay đi lung tung

Mèo Con
Xem chi tiết