Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
~ Kammin Meau ~
Xem chi tiết
Akai Haruma
29 tháng 12 2021 lúc 22:32

Bạn tham khảo tại đây:
https://hoc24.vn/cau-hoi/giup-minh-voiiiii-minh-cam-on-tim-xy-biet-dfracx4-dfrac2y13-dfracx-2y-1y-voi-y-0.4107067269450

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
22 tháng 2 2022 lúc 20:13

Em xin phép nhờ  quý thầy cô và các bạn giúp đỡ với ạ!

 

Cỏ Cây
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 9:59

=>9x+4y=360 và 36/x-36/y=1/2

=>4y=360-9x và 36/x-36/y=1/2

=>y=90-2,25x và \(\dfrac{36}{x}-\dfrac{36}{90-2,25x}=\dfrac{1}{2}\)

=>\(\dfrac{3240-81x-36x}{x\left(90-2,25x\right)}=\dfrac{1}{2}\)

=>90x-2,25x^2=2(3240-117x)

=>-2,25x^2+90x-6840+234x=0

=>x=118,3 hoặc x=25,7

=>y=-176,175 hoặc y=32,175

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 12:54

\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)

Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)

\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)

\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)

\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)

Hhung Ng
Xem chi tiết
Nguyên
5 tháng 4 2022 lúc 16:08

\([\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y]:\left(\sqrt{y}-2\right)\)

ĐK: x,y>0

\(\left[\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}-\dfrac{\sqrt{x}^2+2\sqrt{xy}+\sqrt{y}^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y\right]:\left(\sqrt{y}-2\right)\)

\(\Leftrightarrow\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\sqrt{x}^2-2\sqrt{xy}+\sqrt{y}^2}{\sqrt{x}-\sqrt{y}}-y\right]:\left(\sqrt{y}-2\right)\)

\(\Leftrightarrow\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-y\right]:\left(\sqrt{y}-2\right)\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-y\right):\left(\sqrt{y}-2\right)\)

\(\Leftrightarrow\left(2\sqrt{y}-y\right).\dfrac{1}{\sqrt{y}-2}\)

\(\Leftrightarrow\sqrt{y}\left(2-\sqrt{y}\right).\dfrac{1}{\sqrt{y}-2}\)

\(\Leftrightarrow-\sqrt{y}\left(\sqrt{y}-2\right).\dfrac{1}{\sqrt{y}-2}\)

\(\Leftrightarrow-\sqrt{y}\)

Bùi Minh Anh
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 9 2021 lúc 16:39

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\) và \(x^2-2y^2+z^2=8\)

Áp dụng t/c dãy tsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2y^2}{18}=\dfrac{z^2}{16}=\dfrac{x^2-2y^2+z^2}{4-18+16}=\dfrac{8}{2}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\\z^2=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\\z=\pm8\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 20:43

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

Ta có: \(x^2-2y^2+z^2=8\)

\(\Leftrightarrow4k^2-18k^2+16k^2=8\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=4\\y=3k=6\\z=4k=8\end{matrix}\right.\)

Trường hợp 2: k=-2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=-4\\y=3k=-6\\z=4k=-8\end{matrix}\right.\)

Ha Thù
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 10 2023 lúc 14:51

loading...  

Kiều Vũ Linh
10 tháng 10 2023 lúc 14:54

h) x/y = 9/10 ⇒  y/10 = x/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120

*) x/9 = 120 ⇒ x = 120.9 = 1080

*) y/10 = 120 ⇒ y = 120.10 = 1200

Vậy x = 1080; y = 1200

k) x/y = 3/4

⇒ x/3 = y/4

⇒ 5y/20 = 3x/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3

*) 3x/9 = 3 ⇒ x = 3.9:3 = 9

*) 5y/20 = 3 ⇒ y = 3.20:5 = 12

Vậy x = 9; y = 12

Vân Nguyễn Thị
Xem chi tiết
Minh Hiếu
13 tháng 10 2021 lúc 20:44

\(\dfrac{x}{y}=\dfrac{-3}{4}\)

\(\dfrac{x}{-3}=\dfrac{y}{4}\) 

\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)

\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)