cho x=111...1(2004 chữ số 1) và y=1000...05(2003 chữ số 0) chứng tỏ rằng xy+1 là một số chín phương
cho x=111..11(gồm 2004 chữ số 1); y=100..05 (gồm 2003 chữ số 0) . Cmr : xy+1 là một số chính phương
cho x=111..11(gồm 2004 chữ số 1); y=100..05 (gồm 2003 chữ số 0) . Cmr : xy+1 là một số chính phương
cho x=111..11(gồm 2004 chữ số 1); y=100..05 (gồm 2003 chữ số 0) . Cmr : xy+1 là một số chính phương
Cho a =1111..111 (n chữ số 1) ; b = 100....05( n-1 chữ số 0)
Chứng minh rằng C= ab+1 là một số chính phương
hãy chứng tỏ rằng t=0,5.(2007^2005-2003^2003)là số nguyên
b,A=1986^2004-1/1000^2004 ko là số nguyên
c, CMR khi viết dưới dạng thập phân thì số hữu tỉ (9/11-0,81)^2004 có ít nhất 4000 chữ số 0 đầu tiên sau dấu phảy
cho số a = 111...............1(có n chữ số 1),số b =100.................05(n-1 chữ số 0)
biết n là số tự nhiên lớn hơn 1 . chứng minh rằng ab +1 là số chính phương
lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu
cho a=111...1 (2008 chữ số 1)
b=100...05 (2007 chữ số 0)
chứng minh rằng a.b+1 là số chính phương
Cho số A=111...111 (2019 chữ số 1) và B= 1000...005(2018 chữ số 0).Chứng minh rằng A*B+1 là 1 số chính phương.
Lời giải:
Đặt \(\underbrace{111...1}_{2019}=a\Rightarrow 9a+1=1\underbrace{00...000}_{2019}\)
Do đó:
\(AB+1=\underbrace{111....1}_{2019}(1\underbrace{000...00}_{2019}+5)+1\)
\(=a(9a+1+5)+1=9a^2+6a+1=(3a+1)^2\)
Vậy $AB+1$ là một số chính phương.
Cho :A= 111....111, có tất cả 2016 chữ số
B= 1000......05, có tất cả 2017 chữ số
Chứng minh rằng : A x B + là số chính phương