Tìm x biết: x - 2\(\sqrt{x}\) = 0
Tìm x>0 biết x +\(\sqrt{x^2+2}=\sqrt{x+4}+\sqrt{x+2}\)
cho biểu thức C=\(\dfrac{x}{\sqrt{x}-3}\) với x>0 x≠4 x≠9
Tìm x biết \(\left(2\sqrt{2}+C\right)\sqrt{x}-3C=3x-2\sqrt{x-1}+2\)
Tìm x, biết :
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
b) \(\sqrt{x^2-4}-2\sqrt{x+2}=0\)
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)(ĐKXĐ: \(x\ge\pm3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)(TM)
b)\(\sqrt{x^2-4}-2\sqrt{x+2}=0\)
ĐKXĐ: \(x\ge\pm2\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-2\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=0\\\sqrt{x-2}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
\(P=\left(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\) với x ≥ 0, x ≠ 1
a, Rút gọn P
b, Tìm giá trị biểu thức biết x = \(\sqrt{3+2\sqrt{2}}\)
\(a,P=\left[\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right]\left[\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\\ P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\\ P=\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2\\ P=\left(x-1\right)^2\\ b,x=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\ \Leftrightarrow P=\left(\sqrt{2}+1-1\right)^2=\left(\sqrt{2}\right)^2=2\)
a) \(P=\left(\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)=\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right]^2=\left(x-1\right)^2\)
\(P=\left(x-1\right)^2=\left(\sqrt{\left(\sqrt{2}+1\right)^2}-1\right)^2=\left(\sqrt{2}\right)^2=2\)
cho biết A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)(x≥0,x≠9)
a,tìm x để A<1
b,tìm x để biểu thức A≤2
a: A<1
=>A-1<0
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
=>\(\dfrac{4}{\sqrt{x}-3}< 0\)
=>\(\sqrt{x}-3< 0\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
b: Để A<=2 thì A-2<=0
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}+6}{\sqrt{x}-3}< =0\)
=>\(\dfrac{-\sqrt{x}+7}{\sqrt{x}-3}< =0\)
=>\(\dfrac{\sqrt{x}-7}{\sqrt{x}-3}>=0\)
TH1: \(\left\{{}\begin{matrix}\sqrt{x}-7>=0\\\sqrt{x}-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>=7\\\sqrt{x}>3\end{matrix}\right.\)
=>\(\sqrt{x}>=7\)
=>x>=49
TH2: \(\left\{{}\begin{matrix}\sqrt{x}-7< =0\\\sqrt{x}-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}< =7\\\sqrt{x}< 3\end{matrix}\right.\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
Tìm x ≥ 0, biết:
a) 2x-7\(\sqrt{x}\)+3=0
b) 3\(\sqrt{x}\)+5 < 6
c) x-3\(\sqrt{x}\) -10 < 0
d) x- 5\(\sqrt{x}\) +6 = 0
e) x+ 5\(\sqrt{x}\) -14 < 0
\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)
\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)
\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)
\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)
\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)
Cho x>0; y>0. Tìm GTNN của \(A=\sqrt{x}+\sqrt{y}\) biết \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\).
Tìm x biết
a/\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}=0}\)
b/\(x-5\sqrt{x}+6=0\)
a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)
\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)
\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)
\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)
b)\(x-5\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)
Tìm x biết
x^3-7x=0
x-2$\sqrt{ x}$=0
bài 1
a,tìm đkxđ của x để biểu thức
A=\(\sqrt{2x}+2\sqrt{x+5}\) xác định
b,rút gọn biểu thức B=\(\left(\sqrt{3-1^2}\right)+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\)
bài 3 cho x ≥ 0,x≠1,x≠9 tìm x biết
\(\left(1-\dfrac{x+\sqrt{x}}{\sqrt{1+x}}\right).\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{2}{\sqrt{x-3}}\right)-2\)
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)