Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Ngọc Anh
Xem chi tiết
Na Na
Xem chi tiết
Nhật Minh
16 tháng 6 2017 lúc 16:34

\(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3=a+b+c\)

\(\Leftrightarrow a+b+c+3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a}+\sqrt[3]{c}\right)=a+b+c\)

\(\Leftrightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a}+\sqrt[3]{c}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)

+Neu a+b =0 => \(\sqrt[n]{a}+\sqrt[n]{b}=0\)( n : le)=> \(VT=VP=\sqrt[n]{c}\)(dpcm)

Tuong tu cac TH

=> KL

Thái Viết Nam
Xem chi tiết
Thai Nguyen
Xem chi tiết
nguyễn viết hoàng
17 tháng 8 2018 lúc 10:14

đặt \(\sqrt[3]{a}=x;\sqrt[3]{b}=y;\sqrt[3]{c}=z\)

\(\rightarrow x+y+z=\sqrt[3]{x^3+y^3+z^3}\)

\(\left(x+y+z\right)^3=x^3+y^3+z^3\)

\(\left(x+y\right)\left(z+y\right)\left(x+z\right)=0\)

luôn tồn tại 2 số đối nhau => a,b,c luôn có 2 số đối nhau

mặt khác do n là số lẻ nên \(\sqrt[n]{}\) của 2 số cũng đối nhau

nên \(\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}=\sqrt[n]{a+b+c}\)

Vãi Linh Hồn
Xem chi tiết
Thanh Tùng DZ
20 tháng 5 2019 lúc 11:23

a) Bất đẳng thức đúng khi a = b = 2c

do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)

xảy ra khi n = 1

Thật vậy, ta có :

\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Vậy n nhỏ nhất là 1

b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)

Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)

do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)

Thảo Nguyên Xanh
Xem chi tiết
pokemon pikachu
12 tháng 11 2017 lúc 10:41

youtube.com/c/AnimeVietsubchannel

Thái Thị Minh Chu
Xem chi tiết
Hoàng Lê Bảo Ngọc
7 tháng 7 2016 lúc 9:44

\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\)\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3=a+b+c\Leftrightarrow a+b+c+3.\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=a+b+c\)

\(\Rightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=0\)

Neet
Xem chi tiết
Trần Việt Linh
9 tháng 10 2016 lúc 12:45

Bài 1:

Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

xong bn áp dụng lên trên lm tiếp

Trần Việt Linh
9 tháng 10 2016 lúc 12:49

Bài 3:

theo bđt cô si ta có:

\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)

=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)                         (1)

Tương tự ta có :

\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)                            (2)

\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)                               (3)

Cộng vế vs vế (1)(2)(3) ta có:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)

Trần Việt Linh
9 tháng 10 2016 lúc 12:53

Bài 2:

Ta có: 

\(\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Nên:

\(A< \frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\right)=\frac{1}{2}\left(1-\frac{1}{5}\right)=\frac{2}{5}\)

vung nguyen thi
Xem chi tiết
Unruly Kid
4 tháng 12 2017 lúc 6:00

Đặt vế trái là T, ta có:

\(\dfrac{a}{\sqrt{b+1}}=\dfrac{a\sqrt{2}}{\sqrt{2}.\sqrt{b+1}}\ge\dfrac{a\sqrt{2}}{\dfrac{b+1+2}{2}}=\dfrac{a.2\sqrt{2}}{b+3}\)

Tương tự: \(\dfrac{b}{\sqrt{c+1}}\ge\dfrac{b.2\sqrt{2}}{c+3}\)

\(\dfrac{c}{\sqrt{a+1}}\ge\dfrac{c.2\sqrt{2}}{a+3}\)

Cộng vế theo vế các BĐT vừa chứng minh, ta được

\(T\ge2\sqrt{2}\left(\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{a+3}\right)=2\sqrt{2}\left(\dfrac{a^2}{ab+3a}+\dfrac{b^2}{bc+3b}+\dfrac{c^2}{ac+3c}\right)\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{\dfrac{\left(a+b+c\right)^2}{3}+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{3^2}{\dfrac{3^2}{3}+9}=\dfrac{3\sqrt{2}}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1

Unruly Kid
4 tháng 12 2017 lúc 6:05

b) Đặt vế trái là N,ta có:

\(\sum\sqrt{\dfrac{a^3}{b+3}}=\sum\sqrt{\dfrac{a^4}{ab+3}}=\sum\dfrac{a^2}{\sqrt{ab+3}}=\sum\dfrac{2a^2}{\sqrt{4a\left(b+3\right)}}\ge\sum\dfrac{2a^2}{\dfrac{4a+b+3}{2}}=\sum\dfrac{4a^2}{4a+b+3}\)

\(\sum\dfrac{4a^2}{4a+b+3}\ge\dfrac{\left(2a+2b+2c\right)^2}{4a+b+3+4b+c+3+4c+a+3}=\dfrac{3}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1