Chứng minh rằng nếu \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\) thì \(\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}=\sqrt[n]{a+b+c}\) với n là số nguyên dương lẻ.
Bài 1 : Tìm phần nguyên của số a biết \(a=\sqrt{2}+\sqrt[3]{\dfrac{3}{2}}+\sqrt[4]{\dfrac{4}{3}}+...+\sqrt[n+1]{\dfrac{n+1}{n}}\)
Bài 2 : Cho \(x=\dfrac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}};y=\dfrac{2}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\).Tính xy^3 - x^3y
Bài 3 CMR \(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{2000}}}}< 3\)
Bài 4 Tồn tại hay không các số hữu tỉ a,b,c,d sao cho \(\left(a+b\sqrt{2}\right)^{1994}+\left(c+d\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
Bài 5 CMR nếu a,b,c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ thì \(\sqrt{a},\sqrt{b},\sqrt{c}\) là các số hữu tỉ
Các bạn giúp mk nha đg cần gấp,làm đc bài nào thì cmt ở dưới nha
Cho a, b, c thoả mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7;a+b+c=23;\sqrt{abc}=3\). Tính giá trị biểu thức: \(N=\dfrac{1}{\sqrt{ab}+\sqrt{c}-6}+\dfrac{1}{\sqrt{bc}+\sqrt{a}-6}+\dfrac{1}{\sqrt{ca}+\sqrt{b}-6}\)
1. với \(a=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}};b=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\) tính giá trị biểu thức \(A=a^3+b^3-3\left(a+b\right)\)
2. Giải hệ \(\left\{{}\begin{matrix}2y^2-x^2=1\\2\left(x^3-y\right)=y^3-x\end{matrix}\right.\)
3. cho hai số thức m, n khác 0 thỏa mãn \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\). crm: \(\left(x^2+mx+n\right)\left(x^2+nx+m\right)=0\) luôn có nghiệm
4. cho a, b, c là độ dài ba cạnh của một tam giác. Cm: \(\sqrt{\frac{a}{2b+2c-a}}+\sqrt{\frac{b}{2a+2c-b}}+\sqrt{\frac{c}{2a+2b-c}}\ge\sqrt{3}\)
CMR
\(2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
biết a,b,c là 3 số thực thoả mãn điều kiện a=b+1=c+2 và c>0
Bài 1. Tìm x, y, z biết: \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\) (trong đó, a + b + c = 3)
Bài 2.
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\). Chứng minh rằng: 18<S<19
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
Cho biểu thức R=\(\dfrac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\dfrac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a) Rút gọn biểu thức R.
b)Tìm a ∈ Z để R có giá trị nguyên
c)Chứng minh rằng :R=\(\dfrac{b+81}{b-81}\) thì \(\dfrac{b}{a}\) là một số nguyên chia hết cho 3
Cho biểu thức:
C = \(\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{8+2\sqrt{a}-a}+\dfrac{\sqrt{a}+4}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{4-\sqrt{a}}\)1) Tìm điều kiện của a để biểu thức C có nghĩa. Rút gọn C
2) CMR: 0 < C \(\le\dfrac{3}{2}\). Từ đó suy ra C chỉ nhận một giá trị nguyên duy nhất với \(a\ge0;a\ne4\)
3) Tính gtri của biểu thức C khi a là số nguyên thỏa mãn \(a^2+a-16=4.25^b\left(b\in N\right)\)