Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Đức Anh
Xem chi tiết
Bùi Minh Hằng
20 tháng 12 2021 lúc 9:17
Khách vãng lai đã xóa
Bùi Minh Hằng
20 tháng 12 2021 lúc 9:21
Khách vãng lai đã xóa
Nguyễn Yến Nhi
20 tháng 12 2021 lúc 9:33

x=π/2+kπ

x=π/18+kπ/9

Khách vãng lai đã xóa
Bình Trần Thị
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 1 2018 lúc 9:44

Jennifer Phạm
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 8 2020 lúc 0:54

a/ Bạn coi lại vế trái đề bài, nhìn không hợp lý

b/ \(\Leftrightarrow\frac{1}{2}sin9x-\frac{1}{2}sinx=\frac{1}{2}sin5x-\frac{1}{2}sinx\)

\(\Leftrightarrow sin9x=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}9x=5x+k2\pi\\9x=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{14}+\frac{k\pi}{7}\end{matrix}\right.\)

c/ \(\Leftrightarrow sin2x-cos2x=cosx-sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow cos\left(\frac{3\pi}{4}-2x\right)=cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{3\pi}{4}-2x=x+\frac{\pi}{4}+k2\pi\\\frac{3\pi}{4}-2x=-x-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
28 tháng 8 2020 lúc 0:58

d/

\(\Leftrightarrow sin2x=sin6x-sin4x\)

\(\Leftrightarrow2sinx.cosx=2cos5x.sinx\)

\(\Leftrightarrow sinx\left(cosx-cos5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos5x=cosx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\5x=x+k2\pi\\5x=-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{k\pi}{3}\end{matrix}\right.\)

nguyễn hoàng lê thi
Xem chi tiết
Mushroom
14 tháng 6 2020 lúc 23:13

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Phạm Đức Dâng
Xem chi tiết
Nguyễn Bình Nguyên
18 tháng 4 2016 lúc 15:41

Từ phương trình ban đầu ta có : \(2\cos5x\sin x=\sqrt{3}\sin^2x+\sin x\cos x\)

                                                \(\Leftrightarrow\begin{cases}\sin x=0\\2\cos5x=\sqrt{3}\sin x+\cos x\end{cases}\)

+) \(\sin x=0\Leftrightarrow x=k\pi\)

+)\(2\cos5x=\sqrt{3}\sin x+\cos x\Leftrightarrow\cos5x=\cos\left(x-\frac{\pi}{3}\right)\)

                                             \(\Leftrightarrow\begin{cases}x=-\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{\pi}{18}+\frac{k\pi}{3}\end{cases}\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2020 lúc 15:27

a/

\(\Leftrightarrow2cos6x.cos5x=cos6x\)

\(\Leftrightarrow cos6x\left(2cos5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cos6x=0\\cos5x=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}6x=\frac{\pi}{2}+k2\pi\\5x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{3}\\x=\pm\frac{\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 15:30

b/

\(\Leftrightarrow sin2x+sin6x-\left(cos5x+cosx\right)=0\)

\(\Leftrightarrow2sin4x.cos2x-2cos3x.cos2x=0\)

\(\Leftrightarrow cos2x\left(sin4x-cos3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin4x=cos3x=sin\left(\frac{\pi}{2}-3x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\4x=\frac{\pi}{2}-3x+k2\pi\\4x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 15:33

c/

\(\Leftrightarrow sinx+sin3x+sin2x=cosx+cos3x+cos2x\)

\(\Leftrightarrow2sin2x.cosx+sin2x=2cos2x.cosx+cos2x\)

\(\Leftrightarrow sin2x\left(2cosx+1\right)=cos2x\left(2cosx+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\sin2x=cos2x=sin\left(\frac{\pi}{2}-2x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\2x=\frac{\pi}{2}-2x+k2\pi\\2x=2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{3}+k2\pi\\x=\frac{\pi}{8}+\frac{k\pi}{2}\\\end{matrix}\right.\)