Bài 3: Một số phương trình lượng giác thường gặp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jennifer Phạm

1) giải pt:
a) cosx.cosx=cos2x.cos4x
b) cos5x.sin4x=cos3x.sin2x
c) sinx+sin2x=cosx+cos2x
d) sin2x+sin4x=sin6x

Nguyễn Việt Lâm
28 tháng 8 2020 lúc 0:54

a/ Bạn coi lại vế trái đề bài, nhìn không hợp lý

b/ \(\Leftrightarrow\frac{1}{2}sin9x-\frac{1}{2}sinx=\frac{1}{2}sin5x-\frac{1}{2}sinx\)

\(\Leftrightarrow sin9x=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}9x=5x+k2\pi\\9x=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{14}+\frac{k\pi}{7}\end{matrix}\right.\)

c/ \(\Leftrightarrow sin2x-cos2x=cosx-sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow cos\left(\frac{3\pi}{4}-2x\right)=cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{3\pi}{4}-2x=x+\frac{\pi}{4}+k2\pi\\\frac{3\pi}{4}-2x=-x-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
28 tháng 8 2020 lúc 0:58

d/

\(\Leftrightarrow sin2x=sin6x-sin4x\)

\(\Leftrightarrow2sinx.cosx=2cos5x.sinx\)

\(\Leftrightarrow sinx\left(cosx-cos5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos5x=cosx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\5x=x+k2\pi\\5x=-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{k\pi}{3}\end{matrix}\right.\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Nguyễn Thị Kim Nguyên
Xem chi tiết
Nguyễn Thanh Điền
Xem chi tiết
Batri Htkt
Xem chi tiết
abc
Xem chi tiết
Pé Ngân
Xem chi tiết
Phương Anh
Xem chi tiết