Tại sao \(\sqrt{16+9}\ne\sqrt{16}+\sqrt{9}\)
Bài 60 (trang 33 SGK Toán 9 Tập 1)
Cho biểu thức $B=\sqrt{16 x+16}-\sqrt{9 x+9}+\sqrt{4 x+4}+\sqrt{x+1}$ với $x \geq-1$.
a) Rút gọn biểu thức $B$;
b) Tìm $x$ sao cho $B$ có giá trị là $16$.
\(a,B=4\sqrt{x=1}-3\sqrt{x+1}+2\)\(\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
\(b,\)đưa về \(\sqrt{x+1}=4\Rightarrow x=15\)
a, Với \(x\ge-1\)
\(\Rightarrow B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b, Ta có B = 16 hay
\(4\sqrt{x+1}=16\Leftrightarrow\sqrt{x+1}=4\)bình phương 2 vế ta được
\(\Leftrightarrow x+1=16\Leftrightarrow x=15\)
a) B = 4√x+1 b) x = 15
Cho biểu thức B= \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\) với \(x\ge-1\).
a) Rút gọn biểu thức B.
b) tìm x sao cho B có giá trị là 16.
a.
\(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\left(x\ge-1\right)\)
\(B=\sqrt{16}.\sqrt{x+1}-\sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}+\sqrt{x+1}\)
\(B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(B=\left(4-3+2+1\right).\sqrt{x+1}\)
\(B=4.\sqrt{x+1}\)
b.
\(B=16\\\)
\(\Rightarrow4\sqrt{x+1}=16\)
\(\Rightarrow\sqrt{x+1}=\dfrac{16}{4}=4\)
\(\Rightarrow x+1=4^2\)
\(\Rightarrow x+1=16\rightarrow x=16-1=15\) (thỏa mãn)
vậy x=15
\(\sqrt{16}-\sqrt{9}+\sqrt{16+9}-\sqrt{\left(-2\right)^2}\)giup minh gap
\(\sqrt{16}-\sqrt{9}+\sqrt{16+9}-\sqrt{\left(-2\right)^2}\)
\(=4-3+5-2=4\)
\(\sqrt{16}+\sqrt{9}+\sqrt{16+9}\)
giải bài trên
\(\sqrt{16}+\sqrt{9}+\sqrt{16+9}\)
\(=4+3+\sqrt{25}\)
\(=7+5\)
\(=12\)
cho biểu thức P=\(\frac{\sqrt{x}-3}{\sqrt{x}}\)và Q= \(\frac{\sqrt{x}-1}{\sqrt{x}+4}+\frac{9\sqrt{x}-4}{x-16}-\frac{4\sqrt{x}-x}{\sqrt{x}-4}\) với x>0 và x≠16
a) tính giá trị của P khi x=9
b)rút gọn Q
c)cho M=P.Q tính giá trị của x khi M≥0
Chứng minh rằng
\(\frac{\sqrt[2016]{9}+\sqrt[2016]{16}+\sqrt[2016]{25}}{\sqrt[2016]{12}+\sqrt[2016]{15}+\sqrt[2016]{20}}>\frac{\sqrt[2017]{12}+\sqrt[2017]{15}+\sqrt[2017]{20}}{\sqrt[2017]{9}+\sqrt[2017]{16}+\sqrt[2017]{25}}\)
e,\(\sqrt{\dfrac{9}{169}}\)
f,\(\sqrt{1\dfrac{9}{16}}\)
g,\(\dfrac{\sqrt{2300}}{\sqrt{23}}\)
h,\(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)
\(e,\sqrt{\dfrac{9}{169}}=\dfrac{\sqrt{9}}{\sqrt{169}}=\dfrac{\sqrt{3^2}}{\sqrt{13^2}}=\dfrac{3}{13}\)
\(f,\sqrt{1\dfrac{9}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{\sqrt{25}}{\sqrt{16}}=\dfrac{\sqrt{5^2}}{\sqrt{4^2}}=\dfrac{5}{4}\)
\(g,\dfrac{\sqrt{2300}}{\sqrt{23}}=\sqrt{\dfrac{2300}{23}}=\sqrt{100}=\sqrt{10^2}=10\)
\(h,\dfrac{\sqrt{12,5}}{\sqrt{0,5}}=\sqrt{\dfrac{12,5}{0,5}}=\sqrt{25}=\sqrt{5^2}=5\)
e, \(\sqrt{\dfrac{9}{169}}\)
\(=\sqrt{\dfrac{3^2}{13^2}}\)
\(=\dfrac{3}{13}\)
f, \(\sqrt{1\dfrac{9}{16}}\)
\(=\sqrt{\dfrac{25}{16}}\)
\(=\sqrt{\dfrac{5^2}{4^2}}\)
\(=\dfrac{5}{4}\)
g, \(\dfrac{\sqrt{2300}}{\sqrt{23}}\)
\(=\dfrac{10\sqrt{23}}{\sqrt{23}}\)
\(=10\)
h, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)
\(=\dfrac{\dfrac{5\sqrt{2}}{2}}{\dfrac{\sqrt{2}}{2}}\)
\(=\dfrac{\dfrac{5\sqrt{2}}{2}\cdot2}{\sqrt{2}}\)
\(=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)
\(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right)\)
\(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right)\)
\(=\left(\sqrt{\frac{25}{16}}-\sqrt{\frac{9}{16}}\right)\)
\(=\left(\sqrt{\left(\frac{5}{4}\right)^2}-\sqrt{\left(\frac{3}{4}\right)^2}\right)\)
\(=\left(\frac{5}{4}-\frac{3}{4}\right)=\frac{5-3}{4}=\frac{2}{4}=\frac{1}{2}\)
...Vậy ...................
\(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}=\sqrt{\frac{25}{16}}-\sqrt{\frac{9}{16}}\)
\(=\sqrt{\left(\frac{5}{4}\right)^2}-\sqrt{\left(\frac{3}{4}\right)^2}=\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}\)
#
\(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\)
\(=\sqrt{\frac{25}{16}}-\sqrt{\frac{9}{16}}\)
\(=\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}\)
5\(\sqrt{16}\)-4\(\sqrt{9}\)+\(\sqrt{25}\)-0,3\(\sqrt{400}\)