Tìm nghiệm của các đa thức sau
a) x2 + 2x + 9
b) y2 - y + 1
c) 2y2 - 2y + 4
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Tìm nghiệm của các đa thức sau
a)x2-2(x2-8) b)B(X)=3x-5-4(2x+3) c)M(y)=3y2-5y d) D(x)=2x2-3(x2+4)
Giúp tớ với bài khó quá
a: đặt \(x^2-2\left(x^2-8\right)=0\)
\(\Leftrightarrow16-x^2=0\)
=>x=4 hoặc x=-4
b: Đặt \(3x-5-4\left(2x+3\right)=0\)
=>3x-5-8x-12=0
=>-5x-17=0
=>-5x=17
hay x=-17/5
c: Đặt \(3y^2-5y=0\)
=>y(3y-5)=0
=>y=0 hoặc y=5/3
d: Đặt \(2x^2-3\left(x^2+4\right)=0\)
\(\Leftrightarrow-x^2-12=0\)
hay \(x\in\varnothing\)
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
f) X4 – x3 – 10x2 + 2x +4
g) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
h) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik vs cần gấp!!!
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
f) X4 – x3 – 10x2 + 2x +4
g) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
h) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik với mik đang cần rất gấp ạ!!!
a) x/2 = y/3; y/4=z/5 và x2 -y2=-16
b) tìm x biết : |2x+3|=x+2
c)tìm nghiệm của các đa thức sau: f(x)=-3x+6
Th1: 2x+3 ≥ 0
Khi đó: |2x+3| =x+2
(2x+3)= x+2
- 2x+3= x+2
-2x-x= 2-3
x= -1
Th2: 2x+3 < 0
Khi đó: |2x+3|=x+2
-(2x+3) = x +2
-2x-3 = x+2
-3x = 5
x=-5/3
Vậy x= -1
x= -5/3
Lớp 6 cugx học dạng v nè
`x/2=y/3 <=> x/8=y/12;
`y/4=z/5 <=> y/12=z/15.`
`<=> x/8=y/12=z/15=(x^2-y^2)/(64-144)=16/80=1/5`.
`@ x/8=1/5 <=> x= 8/5`.
`@ y/12=1/5 <=> y=12/5`.
`@ z/15=1/5 <=> y=15/5`.
Vậy...
Lời giải:
a. Đặt $\frac{x}{2}=\frac{y}{3}=a\Rightarrow x=2a; y=3a$
$x^2-y^2=(2a)^2-(3a)^2=-16$
$\Rightarrow -5a^2=-16\Rightarrow a=\pm \frac{4}{\sqrt{5}}$
Nếu $a=\frac{-4}{\sqrt{5}}$ thì:
$x=2a=\frac{-8}{\sqrt{5}}; y=3a=\frac{-12}{\sqrt{5}}; z=\frac{5}{4}y=-3\sqrt{5}$
Nếu $a=\frac{4}{\sqrt{5}}$ thì:
$x=2a=\frac{8}{\sqrt{5}}; y=3a=\frac{12}{\sqrt{5}}; z=\frac{5}{4}y=3\sqrt{5}$
b.
Nếu $x\geq \frac{-3}{2}$ thì:
$2x+3=x+2$
$\Leftrightarrow x=-1$
Nếu $x< \frac{-3}{2}$ thì:
$-2x-3=x+2$
$\Leftrightarrow -5=3x\Leftrightarrow x=\frac{-5}{3}$
Thử lại thấy 2 giá trị $-1, \frac{-5}{3}$ đều tm
c.
$f(x)=-3x+6=0$
$\Leftrightarrow -3x=-6\Leftrightarrow x=2$
Vậy $x=2$ là nghiệm của đa thức.
Bài 1: phân tích đa thức thành nhân tử
a)x2-y2-2x-2y e)x4-2x3+2x-1
b)x2(x+2y)-x-2y f)x4+x3+2x2+x+1
c)x3-4x2-9x+36 g)x2y+xy2+x2z+y2z+2xyz
d)x4+2x3+2x-1 h)3x3-3y2-2(x-y)2
Làm chi tiết giúp mình với ạ , cảm ơn
e) Ta có: \(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\cdot\left(x-1\right)^3\)
h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
a) Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2\left(x+2y\right)-x-2y\)
\(=\left(x+2y\right)\left(x^2-1\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
c) Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2-9\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
d) Ta có: \(x^4+2x^3+2x-1\)
\(=\left(x^2-1\right)\left(x^2+1\right)+2x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+2x-1\right)\)
tìm đa thức B và tính giá trị của đa thức B tại x=1; y=-1/3 biết:
x2-2y2+2/3 x2 y3+B = 2x2+y2+2/3 x2 y3
`x^2-2y^2+2/3x^2y^3+B=2x^2+y^2+2/3x^2y^3`
`=>B=2x^2+y^2+2/3x^2y^3-x^2+2y^2-2/3x^2y^3`
`=>B=(2x^2-x^2)+(y^2+2y^2)+(2/3x^2y^3-2/3x^2y^3)`
`=>B=x^2+3y^2`
Thay `x=1 ; y=[-1]/3` vào `B` có:
`B=1^2+3.([-1]/3)^2=1+3 . 1/9=1+1/3=4/3`
`x^2 - 2y^2 + 2/3x^2y^3 + B = 2x^2 + y^2 + 2/3x^2y^3`
`=> B = 2x^2 + y^2 + 2/3x^2y^3` `- (x^2 - 2y^2 + 2/3x^2y^3)`
`= 2x^2 + y^2 + 2/3x^2y^3 - x^2 + 2y^2 - 2/3x^2y^3`
`= ( 2x^2 - x^2 ) + ( y^2 + 2y^2 ) + ( 2/3x^2y^3 - 2/3x^2y^3 )`
`= x^2 + 3y^2`
Thay `x=1 ; y=-1/3` vào `B` ta có `:`
`B = 1^2 + 3 . ( -1/3 )^2`
`= 1 + 1/3`
`= 4/3`
Bài 6: Viết các biểu thức sau dưới dạng bình phương của một tổng hay một hiệu:
a) x2 + 5x +\(\dfrac{ }{ }\)\(\dfrac{25}{4}\)
b) 16x2 – 8x + 1
c) 4x2 + 12xy + 9y2
d) (x + 3)(x + 4)(x + 5)(x + 6) + 1
e) x2 + y2 + 2x + 2y + 2(x + 1)(y + 1) + 2
g) x2 – 2x(y + 2) + y2 + 4y + 4
h) x2 + 2x(y + 1) + y2 + 2y + 1
này mình có vài câu không làm được, xin lỗi bạn nha
\(b,16x^2-8x+1=\left(4x-1\right)^2\\ c,4x^2+12xy+9y^2=\left(2x+3y\right)^2\\ e,=x^2+2x+1+y^2+2y+1+2\left(x+1\right)\left(y+1\right)\\ =\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\\ =\left[\left(x+1\right)+\left(y+1\right)\right]^2=\left(x+y+2\right)^2\\ g,=x^2-2x\left(y+2\right)+\left(x+2\right)^2=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\\ h,=\left[x+\left(y+1\right)\right]^2=\left(x+y+1\right)^2\)
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 2018A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
:Các biểu thức sau không phụ thuộc vào giá trị của biến đúng hay sai :
a/ 2(2x+x2)-x2(x+2)+(x3-4x+3) b/ x(x2+x+1)-x2(x+1) –x+5
c/ 3x(x-2)-5x(x-1)-8(x2-3) d/ 2y(y2+y+1)-2y2(y+1)-2(y+10)