25% của \(-\frac{21}{4}\)
\(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
\(=\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)
\(=-1+1-\frac{1}{2}=0-\frac{1}{2}\)
\(=\frac{-1}{2}\)
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5=2,5\)
\(\frac{13}{25}+\frac{4}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
= \(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)
= \(-1+1-\frac{1}{2}=-\frac{1}{2}\)
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
=\(\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
= \(1+1+0,5=2,5\)
Giải phương trình
a,\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
b, \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=105\)
b) \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Leftrightarrow\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Leftrightarrow x=50\)
Tính.
a) $\frac{4}{{25}}:\frac{4}{3}$
b) $\frac{3}{{14}}:\frac{6}{7}$
c) $\frac{{12}}{{15}}:2$
d) $\frac{{21}}{8}:6$
a) $\frac{4}{{25}}:\frac{4}{3} = \frac{4}{{25}} \times \frac{3}{4} = \frac{3}{{25}}$
b) $\frac{3}{{14}}:\frac{6}{7} = \frac{3}{{14}} \times \frac{7}{6} = \frac{{3 \times 7}}{{14 \times 6}} = \frac{{3 \times 7}}{{7 \times 2 \times 3 \times 2}} = \frac{1}{4}$
c) $\frac{{12}}{{15}}:2 = \frac{{12}}{{15}} \times \frac{1}{2} = \frac{{12 \times 1}}{{15 \times 2}} = \frac{{6 \times 2 \times 1}}{{15 \times 2}} = \frac{6}{{15}}$
d) $\frac{{21}}{8}:6 = \frac{{21}}{8} \times \frac{1}{6} = \frac{{21 \times 1}}{{8 \times 6}} = \frac{{7 \times 3 \times 1}}{{8 \times 3 \times 2}} = \frac{7}{{16}}$
Bài3. Giải phương trình
a/ \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{102}{3}\)
b/ \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
a. \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Rightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Rightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Rightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Rightarrow x-105=0\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Rightarrow x=105\)
b. \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Rightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+\frac{25-x}{25}+1+\frac{23-x}{27}+1+\frac{21-x}{29}+1=0\)
\(\Rightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Rightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Rightarrow50-x=0\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\ne0\right)\)
\(\Rightarrow x=50\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Dễ dàng thấy nhân tử thứ hai luôn bé thua 0 nên \(x-105=0\)\(\Leftrightarrow x=105\)
b) Kĩ thuật làm tương tự câu a cộng mỗi phân số VT với 1 thì VP=0 và ta có nhân tử chung 50-x
25% của \(-5\frac{1}{4}\)
Ta có: \(-5\frac{1}{4}=-\frac{21}{4}\)
25% của \(-5\frac{1}{4}\) là : \(25\%.\frac{-21}{4}\)\(=-\frac{21}{16}\)
Vậy 25% của \(-5\frac{1}{4}\) là \(\frac{-21}{16}\)
a)\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
b)\(\frac{3}{7}.19.\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
c)\(15\frac{1}{4}:(\frac{-5}{7})-25\frac{1}{4}:(\frac{-5}{7})\)
a) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=1\frac{4}{23}-\frac{4}{23}+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5=2,5\)
b) \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)
\(=\frac{3}{7}.\left(-14\right)=-6\)
c) \(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)\)
\(=\left(-10\right):\left(-\frac{5}{7}\right)\)
\(=14\)
a) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(\frac{27}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5\)
\(=2+0,5\)
\(=2,5.\)
b) \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
\(=\frac{3}{7}.\left(\frac{58}{3}-\frac{100}{3}\right)\)
\(=\frac{3}{7}.\left(-14\right)\)
\(=-6.\)
c) \(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(\frac{61}{4}-\frac{101}{4}\right):\left(-\frac{5}{7}\right)\)
\(=\left(-10\right):\left(-\frac{5}{7}\right)\)
\(=14.\)
Chúc bạn học tốt!
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(\sqrt{\frac{25}{81}}:2\frac{2}{5}-4\frac{5}{9}:2\frac{2}{5}\)
\(6.\left(-\frac{-1}{2}\right)^2+\frac{3}{5}\)
a) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5\)
\(=2+0,5\)
\(=2,5.\)
b) \(\sqrt{\frac{25}{81}}:2\frac{2}{5}-4\frac{5}{9}:2\frac{2}{5}\)
\(=\frac{5}{9}:\frac{12}{5}-\frac{41}{9}:\frac{12}{5}\)
\(=\left(\frac{5}{9}-\frac{41}{9}\right):\frac{12}{5}\)
\(=\left(-4\right):\frac{12}{5}\)
\(=-\frac{5}{3}.\)
c) \(6.\left(-\frac{-1}{2}\right)^2+\frac{3}{5}\)
\(=6.\left(\frac{1}{2}\right)^2+\frac{3}{5}\)
\(=6.\frac{1}{4}+\frac{3}{5}\)
\(=\frac{3}{2}+\frac{3}{5}\)
\(=\frac{21}{10}.\)
Chúc bạn học tốt!
A = \(26:[\frac{(3:10,2-0,1)}{25.\left(0,8+1,2\right)}+\frac{\left(34,06-33,81\right).4}{6,84:\left(38,57-25,15\right)}]+\frac{2}{3}:\frac{4}{21}\)
B = \(\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{(6\frac{5}{9}-3\frac{1}{4}).2\frac{2}{17}}+\left(1,2.0,5\right)\)
A= 6702,431685
B=2,183
ai muon k thi k va ket ban voi mik nhe.
bạn viết cả cách làm ra giúp mình nhé
Câu 1:
\(\frac{21^9.9^6}{49^5.3^{20}}\)
\(\left(-\frac{1}{4}\right).8-\sqrt{\frac{25}{16}:25\%}+\left|-\frac{3}{4}\right|\)