Tìm giá trị lớn nhất của đa thức :
a , C = 5 - 8x - x2
b , D = -3x ( x + 3 ) - 7
Tìm giá trị nhỏ nhất của biểu thức A,B,C và giá trị lớn nhất của biểu thức D,E:
A= x2-4x+1 D= 5-8x-x2
B= 4x2+4x+11 E= 4x-x2+1
C= (x-1).(x+3).(x+2).(x+6)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
A= x2 - 4x +1
= x2 - 4x + 4 - 3
= (x-2)2 -3
Ta có (x-2)2 ≥ 0 ∀ x
⇒ (x-2)2 -3 ≥ -3 ∀ x
Vậy AMin= -3 tại x=2
B= 4x2+4x+11
= 4x2+4x+1+10
= (2x+1)2+10
Ta có (2x+1)2 ≥ 0 ∀ x
⇒ (2x+1)2+10 ≥ 10 ∀ x
Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)
C=(x-1)(x+3)(x+2)(x+6)
= (x-1)(x+6)(x+3)(x+2)
= (x2+5x-6) (x2+5x+6)
= (x2+5x)2 -36
Ta có (x2+5x)2 ≥ 0 ∀ x
⇒ (x2+5x)2 -36 ≥ -36 ∀ x
Vậy CMin=-36 tại x=0 hoặc x= -5
Tìm giá trị lớn nhất của đa thức: D = -3X (X+3) -7
Tìm giá trị nhỏ nhất của đa thức: A= X^2 + 5X +8
B= x (x trừ 6)
Bài 5:tìm giá trị nhỏ nhất của các biểu thức
a)A=x^2-6x+10
b)B=x(x+6)
c)C=x^2+5x+8
d)D=x^2-x
Bài 6: Tìm giá trị lớn nhất của các biểu thức:
a)A=7-4x-x^2
b)B=x(1-x)
c)C=-3x(x+3)-7
d)D=5-8x-x^2
Bài 5:
a/A = x2 - 6x + 10 = x2 - 6x + 9 + 1 = ( x - 3 )2 +1
Vì ( x - 3 )2 \(\ge\)0 nên ( x - 3 )2 + 1 \(\ge\)1
Giá trị nhỏ nhất của A là 1
b/ B = x ( x + 6 ) = x2 + 6x + 9 - 9 = ( x + 3 )2 - 9
Vì ( x + 3 )\(\ge\)0 nên ( x + 3 ) - 9\(\ge\)- 9
Giá trị nhỏ nhất của B là - 9
5 - A\(=x^2-6x+10\)
A\(=x^2-3x-3x+9+1\)
A\(=x\left(x-3\right)-3\left(x-3\right)+1\)
A\(=\left(x-3\right)\left(x-3\right)+1\)
A\(=\left(x-3\right)^2+1\)
Vì \(^{\left(x-3\right)^2\ge0\forall x}\)
\(\rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Hay A\(\ge1\forall x\)
Dấu '' = '' xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
B\(=x\left(x+6\right)\)
B\(=x^2+6x\)
B\(=x\left(x+3\right)+3\left(x+3\right)-9\)
B\(=\left(x+3\right)\left(x+3\right)-9\)
B\(=\left(x+3\right)^2-9\)
Vì\(\left(x+3\right)^2\ge0\forall x\)
\(\rightarrow\left(x+3\right)^2-9\ge-9\forall x\)
Hay B\(\ge-9\forall x\)
Dấu ''='' xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Bài 6:
a/ \(A=7-4x-x^2=-\left(-11+4+4x+x^2\right)=-\left\{-11+\left(x+2\right)^2\right\}=11-\left(x+2\right)^2\)
Vì \(\left(x+2\right)^2\ge0\)nên \(11-\left(x+2\right)^2\le11\)
Giá trị lớn nhất của A là 11
d/ \(D=5-8x-x^2=-\left(x^2+8x+16-21\right)=-\left\{\left(x+4\right)^2-21\right\}=21-\left(x+4\right)^2\)
Vì \(\left(x+4\right)^2\ge0\)nên \(21-\left(x+4\right)^2\le21\)
Giá trị lớn nhất của D là 21
Tính giá trị lớn nhất của các biểu thức sau:
a) A = 5 - 8x - x2
b) B = 5 - x2 + 2x - 4y2 - 4y
Lời giải:
a)
$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$
Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$
b)
$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$
$=7-(x^2-2x+1)-(4y^2+4y+1)$
$=7-(x-1)^2-(2y+1)^2$
Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$
Tìm giá trị lớn nhất của các biểu thức
a. A = 5 - 8x - x2
b. B = 5 - x2 + 2x - 4y2 - 4y
a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)
Dấu ''='' xảy ra khi x = - 4
Vậy GTLN của A là 21 tại x = -4
b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)
Dấu ''='' xảy ra khi x = 1 ; y = -1/2
Vậy GTLN của B là 7 tại x = 1 ; y = -1/2
A = 5 − 8 x − x 2
= -(x2+8x+16)+21
= 21-(x+4)2
Với mọi x thì ( x + 4 ) 2 >= 0
=> 21−(x+4)2=<21 Hay A=<21
Để A=21 thì (x+4)2=0
=>x+4=0
=> x = − 4
Câu sau để anh nghĩ đã nhé
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= \(\dfrac{3}{2x^2+2x+3}\)
b) T= \(\dfrac{5}{3x^2+4x+15}\)
c) V= \(\dfrac{1}{-x^2+2x-2}\)
d) X= \(\dfrac{2}{-4x^2+8x-5}\)
tìm giá trị lớn nhất của đa thức D=-3x(x+3)-7
tìm giá trị lớn nhất của đa thức: C=5-8x-x^2
Ta có: \(C=5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16\right)+21\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4
Vậy: \(C_{max}=21\) khi x=-4
Ta có \(C=21-\left(16+8x+x^2\right)=21-\left(x+4\right)^2\le21\forall x\) (do \(\left(x+4\right)^2\ge0\forall x\))
Dấu bằng xảy ra khi x = -4.
Vậy...
Tìm giá trị lớn nhất của các biểu thức sau:
a. A= -x2 - 4x -2
b. B= -2x2 - 3x + 5
c. C= (2 - x) . (x + 4)
d. D= 5 - 8x - x2
e. E= -3x (x+ 3) - 7
a) A = -x2 - 4x - 2 = -x2 - 4x - 4 + 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy AMax = 2 , đạt được khi x = -2
b) -2x2 - 3x + 5 = -2( x2 + 1/5x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -x2 - 2x - 1 + 9 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9, đạt được khi x = -1
d) D = 5 - 8x - x2 = -x2 - 8x - 16 + 21 = -( x2 + 8x + 16 ) + 21 = -( x + 4 )2 + 21
\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2+21\le21\)
Dấu " = " xảy ra <=> x + 4 = 0 => x = -4
Vậy DMax = 21 , đạt được khi x = -4
e) E = -3x( x + 3 ) - 7 = -3x2 - 9x - 7 = -3( x2 + 3x + 9/4 ) - 1/4 = -3( x + 3/2 )2 - 1/4
\(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)
Dấu " = " xảy ra <=> x + 3/2 = 0 => x = -3/2
Vậy EMax = -1/4 , đạt được khi x = -3/2