Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Bé Bạch Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 20:40

BFEC; AEDB; DCAF; AFHE; BFHD; CEHD

Nguyễn Thị Minh Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2021 lúc 21:58

a) Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 9:56

Đáp án là C

LONG
Xem chi tiết
Trần Minh Hoàng
31 tháng 5 2021 lúc 17:13

Ta có \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BCEF nội tiếp đường tròn đường kính BC. Tâm I của đường tròn này là trung điểm của BC

Isla Nguyen
Xem chi tiết
Huong Nguyen
Xem chi tiết
Buddy
3 tháng 3 2021 lúc 20:02

h vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

 

Phung Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 4 2021 lúc 20:44

a) Xét tứ giác AEHF có 

\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Nguyễn Lê Phước Thịnh
29 tháng 4 2021 lúc 20:45

b) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Được Cũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2023 lúc 18:13

loading...  

Nguyễn Ngọc Phượng
Xem chi tiết