ΔBEC vuông tại E
mà EM là đường trung tuyến
nên EM=MB=MC
Xét ΔEMC có \(\hat{EMB}\) là góc ngoài tại đỉnh M
nên \(\hat{EMB}=\hat{MEC}+\hat{MCE}=2\cdot\hat{MCE}=2\cdot\hat{ACB}\)
Xét tứ giác BFEC có \(\hat{BFC}=\hat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>\(\hat{BFE}+\hat{BCE}=180^0\)
mà \(\hat{BFE}+\hat{AFE}=180^0\) (hai góc kề bù)
nên \(\hat{AFE}=\hat{ACB}\)
Xét tứ giác AFDC có \(\hat{AFC}=\hat{ADC}=90^0\)
nên AFDC là tứ giác nội tiếp
=>\(\hat{AFD}+\hat{ACD}=180^0\)
mà \(\hat{AFD}+\hat{BFD}=180^0\) (hai góc kề bù)
nên \(\hat{BFD}=\hat{BCA}\)
Ta có: \(\hat{BFD}+\hat{AFE}+\hat{EFD}=180^0\)
=>\(\hat{BCA}+\hat{BCA}+\hat{DFE}=180^0\)
=>\(2\cdot\hat{BCA}+\hat{DFE}=180^0\)
=>\(\hat{DFE}+\hat{DME}=180^0\)
=>FEMD là tứ giác nội tiếp