\(\left(x-1\right)\cdot\left(x+1\right)\cdot\left(x+2\right)\)
Tìm x :
\(3x\cdot\left(x-2\right)-2x\cdot\left(2x-1\right)=\left(1-x\right)\cdot\left(1+x\right)\)
\(\left(5x+3\right)\cdot\left(3x-5\right)-\left(x-2\right)\cdot\left(2x+1\right)=6x\cdot\left(3x+1\right)-x^2\)
\(\left(2x-1\right)\cdot\left(2x+1\right)-3\cdot\left(x-1\right)=\left(1-4x\right)\cdot\left(1-x\right)\)
\(\left(2x^2+1\right)\cdot\left(3x^2-1\right)-\left(4x^2-3\right)\cdot\left(x^2+1\right)=x\cdot\left(2x^3+1\right)\)
GIÚP MK ĐI MAI MK PHẢI NỘP RÙI !
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
1:tìm x
a; \(3x+\left|x-2\right|=8\)
b; \(5-\left|x-1\right|=4\)
2:tìm x
\(5\cdot\left(x-2\right)-4\cdot\left(1-3x\right)=\left|3-7\right|+2\cdot\left(1+2x\right)\)
3: tìm x
\(\left(x-2\right)\cdot\left(2x+1\right)-3\cdot\left(x+2\right)=4-5\cdot\left(1-x\right)\)
4:tìm x
\(1\dfrac{1}{2}\cdot\left(x-2\right)-\dfrac{x-5}{3}=3\dfrac{1}{3}\cdot\left(1-2x\right)-\dfrac{5\cdot\left(x+1\right)}{6}\)
5: tìm x
\(\left(x-3\right)\cdot\left(1-x\right)+\left(x-2\right)^2=\left(1-x\right)^2-2\cdot\left(1+x\right)\)
6: tìm x
\(\left(2x-1\right)^2-3\cdot\left(x+2\right)^2=4\cdot\left(x-2\right)-5\cdot\left(x-1\right)^2\)
1. a, 3x + |x - 2| = 8
<=> |x - 2| = 8 - 3x
Xét 2 TH :
TH1: x - 2 = 8 - 3x
<=> x + 3x = 8 + 2
<=> 4x = 10
<=> x = \(\dfrac{5}{2}\) (thỏa mãn)
TH2: x - 2 = -(8 - 3x)
<=> x - 2 = -8 + 3x
<=> -2 + 8 = 3x - x
<=> 6 = 2x
<=> x = 3 (thỏa mãn)
b, 5 - |x - 1| = 4
<=> |x - 1| = 1
<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\) (thỏa mãn)
@Nguyễn Hoàng Vũ
2. 5.(x - 2) - 4.(1 - 3x) = |3 - 7| + 2.(1 + 2x)
<=> 5x - 10 - 4 + 12x = 4 + 2 + 4x
<=> 17x - 14 = 6 + 4x
<=> 17x - 4x = 6 + 14
<=> 13x = 20
<=> x = \(\dfrac{20}{13}\) (thỏa mãn)
@Nguyễn Hoàng Vũ
4. 1\(\dfrac{1}{2}\).(x - 2) - \(\dfrac{x-5}{3}\) = 3\(\dfrac{1}{3}\).(1 - 2x) - \(\dfrac{5.\left(x+1\right)}{6}\)
<=> \(\dfrac{3}{2}\).(x - 2) - \(\dfrac{x-5}{3}\) = \(\dfrac{10}{3}\).(1 - 2x) - \(\dfrac{5x+5}{6}\)
<=> \(\dfrac{3}{2}x-3-\dfrac{x}{3}+\dfrac{5}{3}=\dfrac{10}{3}-\dfrac{20}{3}x-\dfrac{5x}{6}-\dfrac{5}{6}\)
<=> \(\dfrac{3}{2}x-\dfrac{x}{3}+\dfrac{20}{3}x-\dfrac{5x}{6}=\dfrac{10}{3}-\dfrac{5}{6}-3+\dfrac{5}{3}\)
<=> 7x = \(\dfrac{7}{6}\)
<=> x = \(\dfrac{1}{6}\)
@Nguyễn Hoàng Vũ
Tìm x :
a, \(4x^2-\left(3x+1\right)\cdot\left(2x-1\right)=2\cdot\left(x-3\right)^2\)
b.\(\left(5x-1\right)\cdot\left(x+1\right)-\left(2x-1\right)\cdot\left(2x+1\right)=x\cdot\left(x+1\right)\)
c, \(7x^2-\left(2x-3\right)^2=1+3\cdot\left(x+2\right)^2\)
\(a,4x^2-\left(3x+1\right)\left(2x-1\right)=2\left(x-3\right)^2\)
\(\Leftrightarrow4x^2-\left(6x^2-3x+2x-1\right)=2\left(x^2-6x+9\right)\)
\(\Leftrightarrow4x^2-6x^2+x+1-2x^2+12x-18=0\)
\(\Leftrightarrow-4x^2+13x-17=0\)
\(\Leftrightarrow-4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)-\dfrac{103}{16}=0\)
\(\Leftrightarrow-4\left(x-\dfrac{13}{8}\right)^2=\dfrac{103}{16}\)
\(\Leftrightarrow\left(x-\dfrac{13}{8}\right)^2=\dfrac{-103}{64}\Rightarrow\) pt vô nghiệm
\(b,\left(5x-1\right)\left(x+1\right)-\left(2x-1\right)\left(2x+1\right)=x.\left(x+1\right)\)\(\Leftrightarrow5x^2+5x-x-1-\left(4x^2-1\right)=x^2+x\)
\(\Leftrightarrow5x^2+5x-x-1-4x^2+1-x^2-x=0\) \(\Leftrightarrow3x=0\Rightarrow x=0\)
\(c,7x^2-\left(2x-3\right)^2=1+3\left(x+2\right)^2\)
\(\Leftrightarrow7x^2-\left(4x^2-12x+9\right)=1+3\left(x^2+4x+4\right)\)
\(\Leftrightarrow7x^2-4x^2+12x-9=1+3x^2+12x+12\)\(\Leftrightarrow7x^2-4x^2+12x-9-1-3x^2-12x-12=0\)\(\Leftrightarrow-22=0\) ( vô lí)
Vậy phương trình vô nghiệm
Phân tích thành nhân tử ;
1, \(\left(x+2\right)\cdot\left(x+3\right)\cdot\left(x+4\right)\cdot\left(x+5\right)-24\)
2, \(x\cdot\left(x+4\right)\cdot\left(x+6\right)\cdot\left(x+10\right)+128\)
3, \(\left(x^2+5x+6\right)\cdot\left(x^2-15x+56\right)-144\)
4, \(\left(x-18\right)\cdot\left(x-7\right)\cdot\left(x+35\right)\cdot\left(x+90\right)-67x^2\)
5, \(\left(x-2\right)\cdot\left(x-3\right)\cdot\left(x-4\right)\cdot\left(x-6\right)-72x^2\)
1,(x+2)(x+5)(x+3)(x+4)-24=(x2+7x+10)(x2+7x+12)-24
Đặt x2+7x+10= t ta có t(t+2)-24=t2+2t-24=(t-4)(t+6)
hay (x2+7x+6)(x2+7x+16)
2,x(x+10)(x+4)(x+6)+128=(x2+10x)(x2+10x+24)+128
Đặt x2+10x=t ta có t(t+24)+128=t2+24t+128=(t+8)(t+16)
hay (x2+10x+8)(x2+10x+16)
3,(x+2)(x-7)(x+3)(x-8)-144=(x2-5x-14)(x2-5x-24)-144
Đặt x2-5x-14=t ta có t(t-10)-144=t2-10t-144=(t-18)(t+8)
Hay (x2-5x-32)(x2-5x-6)=(x2-5x-32)(x+1)(x-6)
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
rút gọn biểu thức sau bằng cách nhanh nhất
A = \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
B = \(\left(3x^3+3x+1\right)\cdot\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
C = \(\left(2-6x\right)^2+\left(2-5x\right)^2+2\cdot\left(6x-2\right)\cdot\left(2-5x\right)\)
D = \(5\cdot\left(3x-1\right)^2+4\cdot\left(5x+1\right)^2-12\cdot\left(5x-2\right)\left(5x+2\right)\)
E = \(\left(3x-1\right)^2+\left(2x+4\right)\cdot\left(1-3x\right)+\left(x+2\right)^2\)
G = \(\left(x-1\right)^3+4\cdot\left(x+1\right)\cdot\left(1-x\right)+3\cdot\left(x-1\right)\cdot\left(x^2+x+1\right)\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
Rút gọn: \(\frac{x^2}{\left(x+y\right)\cdot\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\cdot\left(1+x\right)}-\frac{x^2\cdot y^2}{\left(x+1\right)\cdot\left(1-y\right)}\)
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
Phân tích đa thức thành nhân tử
a)\(x\cdot\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)+1\)
b)\(\left(x^2-x+2\right)^2+4\cdot x^2-4\cdot x-4\)
c)\(\left(x+2\right)\cdot\left(x+4\right)\cdot\left(x+6\right)\cdot\left(x+8\right)+16\)
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
Cho mk hỏi con này ra bao nhiu z: \(A=\frac{\left(\sqrt{x}+2\right)\cdot\left(x-1\right)-\left(\sqrt{x}-2\right)\cdot\left(x+1\right)\cdot\left(x+1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\)
Tìm x :
a, \(2\cdot\left(5x+1\right)-7\cdot\left(3x-2\right)=4\cdot\left(2x-1\right)+3\cdot\left(2-x\right)\)
b, \(-4\cdot\left(\dfrac{1}{2}x-3\right)+\dfrac{7}{2}\cdot\left(2x-1\right)+x=5x\cdot\left(1-x\right)\)
\(a,2\left(5x+1\right)-7\left(3x-2\right)=4\left(2x-1\right)+3\left(2-x\right)\)
\(\Leftrightarrow10x+2-21x+14=8x-4+6-3x\)
\(\Leftrightarrow-16x=-14\)
\(\Rightarrow x=\dfrac{7}{8}\)
\(b,-4\left(\dfrac{1}{2}x-3\right)+\dfrac{7}{2}\left(2x-1\right)+x=5x\left(1-x\right)\)
\(\Leftrightarrow-2x+12+7x-\dfrac{7}{2}+x=5x-5x^2\)
\(\Leftrightarrow5x^2+x+\dfrac{17}{2}=0\)
Cái này không biết tách kiểu gì cho vừa nên bạn nhấn máy tính nhé
Mode 5 3 rồi lần lượt điền vào theo thứ tự trên thì
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}+\dfrac{13i}{10}\\x=-\dfrac{1}{10}-\dfrac{13i}{10}\end{matrix}\right.\)
Chứng minh biểu thức không phụ thuộc x :
1, \(\left(3x-1\right)^2-2\cdot\left(2x-3\right)\cdot\left(2x+3\right)-\left(x-3\right)^2\)
2, \(\left(3x+2\right)^3-\left(3x-2\right)^3-3\cdot\left(6x-1\right)\cdot\left(6x+1\right)\)
3, \(\left(3x-5\right)^2+3\cdot\left(x+1\right)\cdot\left(x-1\right)-\left(4x-3\right)^2+\left(2x+2\right)\cdot\left(2x+1\right)\)