Rút gonj: x3 - x2 - 5x + 125
Phân tích các đa thức sau thành nhân tử:
b ) x 3 – x 2 – 5 x + 125
b) x3 – x2 – 5x + 125
= (x3 + 125) - (x2 + 5x)
= (x + 5)(x2 - 5x + 25) - x(x + 5)
= (x + 5)(x2 - 5x + 25 - x)
= (x + 5)(x2 - 6x + 25)
Bài 1. Làm tính nhân:
a) 3x2 (2 - 5xy)
b) -\(\dfrac{2}{3}\) xy (xy2 - x3 + 4)
c) ( x - 7 y )( xy + 1)
Bài 2. Rút gọn các biểu thức sau:
a) 5x(4x2 - 2x +1) - 2x(10x2 - 5x - 2)
b) 3x( x - 2) - 5x(1- x) - 8(x2 - 3)
d) (x3 - 2x)(x2 +1)
Bài 1:
\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)
Bài 2:
\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)
câu d của bài 2 là của bài 1 nha mình để nhầm chỗ huhu
Bài 2: Rút gọn biểu thức
a.(-2x3). (x2-5x-1212) -(x3+3)
b.2(x-5y).(x+y)+(x+y)2+(5y-x2)
Lời giải:
a.
$=-2x^5+10x^4+2424x^3-x^3-3=-2x^5+10x^4+2423x^3-3$
b.
$=(x-5y)^2+2(x-5y)(x+y)+(x+y)^2$
$=[(x-5y)+(x+y)]^2=(2x-4y)^2=4x^2-16xy+16y^2$
Bài 2: Rút gọn biểu thức
a.(-2x3). (x2-5x-\(\dfrac{1}{2}\)) -(x3+3)
b.2(x-5y).(x+y)+(x+y)2+(5y-x2)
Bài 1; Rút gọn biểu thức
b) 1/x-3-1/x+3+2x/9-x2 c) x+1/x-2+4-5x/x3+4x:x-2/x2+4
a) Rút gọn biểu thức P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x).
b) Tính giá trị biểu thức P(x) khi x = \( - \dfrac{1}{2}\)
a) P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x)
= 7x2 . x2 + 7x2 . (-5x) + 7x2 . 2 – [5x. x3 + 5x . (-7x2) + 5x . 3x]
= 7. (x2 . x2) + [7.(-5)] . (x2 . x) + (7.2).x2 – {5. (x.x3) + [5.(-7)]. (x.x2) + (5.3).(x.x)}
= 7x4 + (-35). x3 + 14x2 – [ 5x4 + (-35)x3 + 15x2 ]
= 7x4 + (-35). x3 + 14x2 - 5x4 + 35x3 - 15x2
= (7x4 – 5x4) + [(-35). x3 + 35x3 ] + (14x2 - 15x2 )
= 2x4 + 0 - x2
= 2x4 – x2
b) Thay x = \( - \dfrac{1}{2}\) vào P(x), ta được:
P(\( - \dfrac{1}{2}\)) = 2. (\( - \dfrac{1}{2}\))4 – (\( - \dfrac{1}{2}\))2 \))
\(\begin{array}{l} = 2.\dfrac{1}{{16}} - \dfrac{1}{4} \\ = \dfrac{1}{8} - \dfrac{{2}}{8} \\ = \dfrac{-1}{8} \end{array}\)
câu 2: bậc của đa thức M=x8+x2y7-y5+x là?
A.1 B.5 C.8 D.9
c6: biết x3+125=A.B và A là đa thức có bậc =1 . Khi đó biểu thức B là?
A. x2-5x+25 B.x2+5x+25 C.x2-10x+25 D. x2+10x+25
2D
6
\(x^3+125=\left(x+5\right)\left(x^2-5x+25\right)\)
A là đa thức bậc 1
=>A=x+5
=>B=x^2-5x+25
=>Chọn A
Câu 2. M có bậc 2 + 7 = 9
Chọn D
Câu 6. x³ + 125 = x³ + 5³ = (x + 5)(x² - 5x + 25)
Chọn A
rút gọn phân thức
1 . 8x3-125 / 3(x-3)-(x-3)(8-4x)
2 . x4-y4 / y3-x3
3 . x10-x8-x7-x6-x5-x4-x3-x2+1 / x30+x24+x18+x12+x6+1
2: \(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{-\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{-\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b)
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].