Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Herimone
Xem chi tiết
Akai Haruma
7 tháng 8 2021 lúc 18:56

Lời giải:
a.

Áp dụng BĐT Bunhiacopxky:

$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$

$\Rightarrow A\leq 4$

Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$

b.

$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$

Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương

$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$

$\sqrt{x}=\frac{5-2m}{m}$

Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$

Mà $m$ nguyên dương nên $5-2m\geq 0$

$\Leftrightarrow m\leq 2,5$. 

$\Rightarrow m=1; 2$

$\Rightarrow x=9; x=\frac{1}{4}$

Đặng Quốc Khánh
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 8 2021 lúc 9:26

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

Kinder
Xem chi tiết
Edogawa Conan
30 tháng 7 2021 lúc 8:38

Max E=10

Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Lizy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 2024 lúc 21:37

\(P=\dfrac{\sqrt{x}-3+2}{\sqrt{x}-3}=1+\dfrac{2}{\sqrt{x}-3}\)

P lớn nhất khi \(\dfrac{2}{\sqrt{x}-3}\) lớn nhất

\(\Rightarrow\sqrt{x}-3\) là số dương nhỏ nhất

\(\Rightarrow x\) là số nguyên dương nhỏ nhất thỏa mãn \(\sqrt{x}-3\) dương

\(\sqrt{x}-3>0\Rightarrow x>9\)

\(\Rightarrow x_{min}=10\)

Khi đó \(P_{max}=\dfrac{\sqrt{10}-1}{\sqrt{10}-3}\)

Kunzy Nguyễn
Xem chi tiết
Tạ Duy Phương
18 tháng 10 2015 lúc 12:46

ĐKXĐ: \(x\ge0\).  Ta có: 

\(P=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\frac{1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)

Để P đạt GTLN thì \(\frac{1}{\sqrt{x}}+9\sqrt{x}\) đạt GTNN. Áp dụng BĐT Cô-si ta có:

\(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}.9\sqrt{x}}=6\Rightarrow P\le1-6=-5\)

Xảy ra đẳng thức khi và chỉ khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow9x=1\Leftrightarrow x=\frac{1}{9}\)  (thỏa mãn) 

Vậy max P = -5 khi và chỉ khi x = 1/9

Trần Đức Thắng
18 tháng 10 2015 lúc 12:52

\(P=1-\frac{1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\le1-2\sqrt{\frac{1}{\sqrt{x}}\cdot9\sqrt{x}}=1-6=-5\)

Vậy MAx P = -5 tại x = 1/9 

nhinhanhnhen
Xem chi tiết
:vvv
Xem chi tiết
missing you =
9 tháng 10 2021 lúc 21:14

\(\forall x\in R\Rightarrow A=\dfrac{\sqrt{x}}{x-2\sqrt{x}+9}\Leftrightarrow A\left(x-2\sqrt{x}+9\right)=\sqrt{x}\)

\(\Leftrightarrow Ax-2A\sqrt{x}-\sqrt{x}+9A=0\)

\(\Leftrightarrow A\sqrt{x}^2-\sqrt{x}\left(2A+1\right)+9A=0\)

\(\Rightarrow\Delta\ge0\Rightarrow\left(2A+1\right)^2-36A^2=-32A^2+4A+1\ge0\Rightarrow-\dfrac{1}{8}\le A\le\dfrac{1}{4}\Rightarrow A\le\dfrac{1}{4}\Rightarrow MaxA=\dfrac{1}{4}\)

\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=9\)

An Vy
Xem chi tiết