gải bpt có Bảng xét đấu nha
\(\frac{2x^2-5x+2}{x-1}>\frac{2x^2+x+15}{x-3}\)
giải bpt băng cách lập bảng xét dấu:
\(\frac{x+2}{3x+1}\le\frac{x-2}{2x-1}\)
Giải bpt
\(\frac{x+2}{\sqrt{2x+3}-\sqrt{x+1}}\ge\sqrt{2x^2+5x+3}+1\)
giải các pt sau
a)5X(X-2020)+X=2020
b)4(X-5)2-(2X+1)2=0
c)\(\frac{3X}{5}-\frac{2X+1}{3}=2-\frac{X-3}{15}\)
d)5X3+10X2+5X=0
e)2X3-8X=0
f)\(\frac{X^2+5}{25-X^2}=\frac{3}{X+5}+\frac{X}{X-5}\)
g)\(\frac{4}{2X-3}-\frac{4X}{9-4X^2}=\frac{1}{2X+3}\)
h)|2X-4|-15=1
i)20-3|2X+1|=17
k)|4X+2|-1,5=1
GIẢI GIÚP MÌNH NHANH VỚI NHA
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
\(a,5x\left(x-2020\right)+x=2020\)
\(< =>5x\left(x-2020\right)+x-2020=0\)
\(< =>\left(5x+1\right)\left(x-2020\right)=0\)
\(< =>\orbr{\begin{cases}5x+1=0\\x-2020=0\end{cases}}\)
\(< =>\orbr{\begin{cases}5x=-1\\x=2020\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=2020\end{cases}}}\)
\(b,4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(< =>4\left(x^2-20x+25\right)-\left(4x^2+4x+1\right)=0\)
\(< =>4x^2-80x+100-4x^2-4x-1=0\)
\(< =>-84x+99=0< =>84x=99< =>x=\frac{99}{84}\)
\(2x-\frac{4-3x}{\frac{5}{15}}=7x-\frac{x-3}{\frac{2}{5}}-x+1\)
\(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\)
giai ho minh 2 bai nay nha
nhanh mik tk
\(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\)
\(\Rightarrow\frac{3\left(5x-1\right)}{30}+\frac{5\left(2x+3\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{x}{30}\)
\(\Rightarrow15x-3+10x+15=2x-16-x\)
\(\Rightarrow24x=-28\)
\(\Rightarrow x=-\frac{7}{6}\)
giải hệ bpt
\(\frac{1}{13}\le\frac{x^2-2x-2}{x^2-5x+7}\le1\)
Giải từng bất phương trình bằng cách chuyển vế rồi lập bảng xét dấu là ra nha bạn
gải pt
\(\frac{2x-13}{2x-16}+\frac{2\left(x-6\right)}{x-8}=\frac{7}{8}+\frac{2\left(5x-39\right)}{3x-24}\)
máy tính mik khó viết nhưng bài này có mẫu chung nên dễ làm mà
bn cứ đưa mẫu ra có x-8 chung đó
sau đó tính tiếp theo bt là ra mà
bạn ơi bạn làm chi tiết ra ik mk thư rôi nhưng không đc
bài 1 gải phương trình
a 7x -5=13-5x
b 5(2x-3)-4(5x-7)=19-2(x+11)
c\(\frac{2x-1}{3}\)- \(\frac{5x+2}{7}\)= x+13
d \(\frac{2x-3}{3}\)-\(\frac{x-3}{6}\)=\(\frac{4}{\left(x+1\right)\left(x+3\right)}\)=1
e \(\frac{2}{x+1}\)-\(\frac{1}{x-2}\)=\(\frac{3x-11}{\left(x+1\right)\left(x+2\right)}\)
f \(\frac{3x-1}{x-1}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
a/ \(7x-5=13-5x\)
\(\Leftrightarrow7x+5x=13+5\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=\frac{3}{2}\)
b/\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow10x-20x+2x=19-22-28+15\)
\(\Leftrightarrow-8x=-16\)
\(\Leftrightarrow x=2\)
c/ \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
\(\Leftrightarrow\frac{7\left(2x-1\right)-3\left(5x+2\right)-21\left(x+13\right)}{21}=0\)
\(\Leftrightarrow14x-7-15x-6-21x-273=0\)
\(\Leftrightarrow-22x-286=0\)
\(\Leftrightarrow x=-13\)
e/ \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{2}{x+1}-\frac{1}{x-2}-\frac{3x-11}{\left(x+1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)\left(x+2\right)-\left(x+1\right)\left(x+2\right)-\left(3x-11\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x^2-4\right)-\left(x^2+3x+2\right)-\left(3x^2-17x+22\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow2x^2-8-x^2-3x-2-3x^2+17x-22=0\)
\(\Leftrightarrow-2x^2+14x-32=0\)
\(\Leftrightarrow x^2-7x+16=0\)
\(\Leftrightarrow x=\frac{-\left(-7\right)\pm\sqrt{\left(-7\right)^2-4.1.16}}{2}\)
\(\Leftrightarrow x=\frac{7\pm\sqrt{-15}}{2}\left(ktm\right)\)
\(\Leftrightarrow x\in\varnothing\)
Bài 1:
a) \(7x-5=13-5x\)
\(\Leftrightarrow7x+5x=13+5\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=18:12\)
\(\Leftrightarrow x=\frac{3}{2}.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{3}{2}\right\}.\)
b) \(5.\left(2x-3\right)-4.\left(5x-7\right)=19-2.\left(x+11\right)\)
\(\Leftrightarrow10x-15-\left(20x-28\right)=19-\left(2x+22\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow13-10x=-3-2x\)
\(\Leftrightarrow13+3=-2x+10x\)
\(\Leftrightarrow16=8x\)
\(\Leftrightarrow x=16:8\)
\(\Leftrightarrow x=2.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2\right\}.\)
c) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
\(\Leftrightarrow\frac{7.\left(2x-1\right)}{7.3}-\frac{3.\left(5x+2\right)}{3.7}=\frac{21.\left(x+13\right)}{21}\)
\(\Leftrightarrow\frac{14x-7}{21}-\frac{15x+6}{21}=\frac{21x+273}{21}\)
\(\Leftrightarrow14x-7-\left(15x+6\right)=21x+273\)
\(\Leftrightarrow14x-7-15x-6=21x+273\)
\(\Leftrightarrow-x-13=21x+273\)
\(\Leftrightarrow-x-21x=273+13\)
\(\Leftrightarrow-22x=286\)
\(\Leftrightarrow x=286:\left(-22\right)\)
\(\Leftrightarrow x=-13.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-13\right\}.\)
Chúc bạn học tốt!
Giải các bpt sau
a, \(\frac{\left(4-x\right)\left(x^2-2x-15\right)}{2x^2+x+1}\le0\)
b, \(\frac{x^2+x-3}{x^2-4}\ge1\)
gải pt:
A = \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
\(A=\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x-1}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{2x-5}{x+3}=0\)
\(\Leftrightarrow\frac{2x\left(x+3\right)+4-\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)
\(\Leftrightarrow13x-1=0\)
\(\Leftrightarrow x=\frac{1}{13}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{13}\right\}\)
trả lời
cậu chỉ cần dùng phương trình bậc 2
hoặc tìm x ẩn
hok tốt