Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2020 lúc 10:52

a.

ĐKXĐ: \(cosx\ne0\)

Chia 2 vế cho \(cos^2x\) ta được:

\(\left(1+tanx\right).tan^2x=3tanx\left(1-tanx\right)+\frac{3}{cos^2x}\)

\(\Leftrightarrow tan^2x\left(tanx+1\right)=3tanx-3tan^2x+3+3tan^2x\)

\(\Leftrightarrow tan^2x\left(tanx+1\right)-3\left(tanx+1\right)=0\)

\(\Leftrightarrow\left(tan^2x-3\right)\left(tanx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
18 tháng 8 2020 lúc 11:04

c/

\(\Leftrightarrow cos^3x=sinx\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(\Leftrightarrow cos^3x=sinx\left(cos2x-\frac{1}{2}\right)\)

\(\Leftrightarrow cos^3x=2sinx\left(1-2sin^2x-\frac{1}{2}\right)\)

\(\Leftrightarrow cos^3x=sinx\left(\frac{1}{2}-2sin^2x\right)\)

\(\Leftrightarrow2cos^3x=sinx-4sin^3x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow2=tanx\left(1+tan^2x\right)-4tan^3x\)

\(\Leftrightarrow3tan^3x-tanx+2=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+2\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
18 tháng 8 2020 lúc 11:09

d/

\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)

\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)

\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Thị Kiều Duyên
Xem chi tiết
Lộc Đinh
7 tháng 8 2016 lúc 22:19

2sinxcosx +2cos2x +3sĩn+cosx -3 =0

Sinx (2cosx +3 )+2cos2 x +cosx -3 

Sau đó lấy máy tính giải pt bậc 2 ra sẽ có nhân tử chung l

lu nguyễn
Xem chi tiết
thị thanh xuân lưu
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:28

1.

Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?

2.

\(sin3x-4sinx.cos2x=0\)

\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)

\(\Leftrightarrow2sinx-sin3x=0\)

\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)

\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)

\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:33

3.

\(sin^2x.cosx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

4.

\(\sqrt{3}sin2x+1-cos2x=3\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:37

5.

Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)

6.

\(sinx+cosx-2sinx.cosx+1=0\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)

Pt trở thành:

\(t+1-t^2+1=0\)

\(\Leftrightarrow-t^2+t+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Nguyễn Thị Kiều Anh
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:54

a/

\(\Leftrightarrow3\left(cos4x+1\right)+2cos^2x\left(1-4cos^4x\right)=0\)

\(\Leftrightarrow3\left(2cos^22x-1+1\right)+2cos^2x\left(1-2cos^2x\right)\left(1+2cos^2x\right)=0\)

\(\Leftrightarrow6cos^22x+\left(1+cos2x\right).\left(-cos2x\right)\left(2+cos2x\right)=0\)

Đặt \(cos2x=a\)

\(\Rightarrow6a^2-a\left(a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow a\left(-a^2+3a-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\\cos2x=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:58

b/

\(\Leftrightarrow4+3sinx+sin^3x=3\left(1-sin^2x\right)+\left(1-sin^2x\right)^3\)

Đặt \(sinx=a\) ta được:

\(a^3+3a+4=3-3a^2+\left(1-a\right)^3\)

\(\Leftrightarrow a^3+3a^2+3a+1=\left(1-a\right)^3\)

\(\Leftrightarrow\left(a+1\right)^3=\left(1-a\right)^3\)

\(\Leftrightarrow a+1=1-a\)

\(\Leftrightarrow a=0\)

\(\Rightarrow sinx=0\Rightarrow x=k\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:04

c/

ĐKXĐ: ...

\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)

\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)

\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)

\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)

\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pi+k2\pi\)

Phelan Egan
Xem chi tiết
Adonis Baldric
14 tháng 8 2017 lúc 16:42

a, \(sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2cos^2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2\cdot\left[1+cos2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\right]=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-1-cos\left(\dfrac{\pi}{2}-x\right)=0\)

\(\Leftrightarrow sin\dfrac{s}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x-sinx=0\)

\(\Leftrightarrow sinx\cdot\left(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\text{ (1) }\\sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx=0\Leftrightarrow x=k\pi\left(k\in Z\right)\)

(2) : \(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-cos\dfrac{x}{2}\cdot2sin\dfrac{x}{2}\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot cos^2\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot\left(1-sin^2\dfrac{x}{2}\right)-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}+2sin^3\dfrac{x}{2}-1=0\)

\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}=1\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\pi+k4\pi\left(k\in Z\right)\)

Adonis Baldric
14 tháng 8 2017 lúc 17:03

b, \(tanx-3cotx=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cos}{sinx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{sinx-cosx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow sin^2x-3cos^2x=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}\cdot cosx\right)\cdot\left(sinx+\sqrt{3}\cdot cosx\right)=4\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx+\sqrt{3}\cdot cosx\right)\cdot\left[\left(sinx-\sqrt{3}\cdot cosx\right)-4sinx\cdot cosx\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}\cdot cosx=0\text{ (1) }\\sinx-\sqrt{3}\cdot cosx-4sinx\cdot cosx=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx+\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=0\)

\(\Leftrightarrow cos\dfrac{\pi}{3}\cdot sinx+sin\dfrac{\pi}{3}\cdot cosx=0\)

\(\Leftrightarrow sin\cdot\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\left(k\in Z\right)\)

(2) : \(sinx-\sqrt{3}cosx-4sinx\cdot cosx=0\)

\(\Leftrightarrow sinx-\sqrt{3}cos=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cos2=sin2x\)

\(\Leftrightarrow cos\dfrac{\pi}{3}-sinx-sin\dfrac{\pi}{3}\cdot cosx=sin2x\)

\(\Leftrightarrow sin\cdot\left(x-\dfrac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=2x+k2\pi\\x-\dfrac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\left(k\in Z\right)\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2020 lúc 11:32

a/

\(\Leftrightarrow1-2\left(2cos^2x-1\right)-\sqrt{3}sinx+cosx=0\)

\(\Leftrightarrow3-4cos^2x+cosx-\sqrt{3}sinx=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(4cosx+3\right)-\sqrt{3}sinx=0\)

\(\Leftrightarrow2sin^2\frac{x}{2}\left(4cosx+3\right)-2\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\frac{x}{2}=0\Rightarrow x=k2\pi\\sin\frac{x}{2}\left(4cosx+3\right)-\sqrt{3}cos\frac{x}{2}=0\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow sin\frac{x}{2}\left(8cos^2\frac{x}{2}-1\right)-\sqrt{3}cos\frac{x}{2}=0\)

- Với \(\left\{{}\begin{matrix}cos\frac{x}{2}=0\\sin\frac{x}{2}=-1\end{matrix}\right.\) \(\Rightarrow x=-\pi+k4\pi\) là 1 nghiệm

- Với \(cos\frac{x}{2}\ne0\) chia 2 vế cho \(cos^3\frac{x}{2}\)

\(tan\frac{x}{2}\left(8-1-tan^2\frac{x}{2}\right)-\sqrt{3}-\sqrt{3}tan^2\frac{x}{2}=0\)

\(\Leftrightarrow-tan^3\frac{x}{2}-\sqrt{3}tan^2\frac{x}{2}+7tan\frac{x}{2}-\sqrt{3}=0\)

Đặt \(tan\frac{x}{2}=t\)

\(\Rightarrow t^3+\sqrt{3}t^2-7t+\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\sqrt{3}\\t=-2-\sqrt{3}\\t=2-\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}=\frac{\pi}{3}+k\pi\\\frac{x}{2}=-\frac{5\pi}{12}+k\pi\\\frac{x}{2}=\frac{\pi}{12}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
18 tháng 8 2020 lúc 11:35

b/

\(\Leftrightarrow cos^2x-sin^2x+cos^2x-sinx.cosx=8\left(cosx-sinx\right)\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)+cosx\left(cosx-sinx\right)=8\left(cosx-sinx\right)\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(2cosx+sinx-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\left(1\right)\\2cosx+sinx=8\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x-\frac{\pi}{4}=k\pi\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

Xét (2), theo điều kiện có nghiệm của pt lượng giác bậc nhất, \(2^2+1^2< 8^2\Rightarrow\left(2\right)\) vô nghiệm

Nguyễn Việt Lâm
18 tháng 8 2020 lúc 11:38

c/

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)

Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow cosx.cosa+sinx.sina=cosa\)

\(\Leftrightarrow cos\left(x-a\right)=cosa\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2020 lúc 0:54

a/ Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow2tan^3x=\frac{1}{cos^2x}\)

\(\Leftrightarrow2tan^3x=1+tan^2x\)

\(\Leftrightarrow2tan^3x-tan^2x-1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(2tan^2x+tanx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\2tan^2x+tanx+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

b/

\(\Leftrightarrow sin^3x-sinx+cos^3x+cosx=0\)

\(\Leftrightarrow-sinx\left(1-sin^2x\right)+cos^3x+cosx=0\)

\(\Leftrightarrow-sinx.cos^2x+cos^3x+cosx=0\)

\(\Leftrightarrow cosx\left(cos^2x-sinx.cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\cos^2x-sinx.cosx+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos2x-\frac{1}{2}sin2x+1=0\)

\(\Leftrightarrow cos2x-sin2x=-3\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=\frac{3}{\sqrt{2}}>1\left(vn\right)\)

Nguyễn Việt Lâm
18 tháng 8 2020 lúc 0:57

c/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(4+2tan^3x-3tanx.\frac{1}{cos^2x}=0\)

\(\Leftrightarrow2tan^3x-3tanx\left(1+tan^2x\right)+4=0\)

\(\Leftrightarrow-tan^3x-3tanx+4=0\)

\(\Leftrightarrow\left(1-tanx\right)\left(tan^2x+tanx+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tan^2x+tanx+4=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
18 tháng 8 2020 lúc 1:01

d/

\(\Leftrightarrow2cos^3x+2sinx-6sin^2x.cosx=0\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(2+2tanx.\frac{1}{cos^2x}-6tan^2x=0\)

\(\Leftrightarrow1+tanx\left(1+tan^2x\right)-3tan^2x=0\)

\(\Leftrightarrow tan^3x-3tan^2x+tanx+1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x-2tanx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tan^2x-2tanx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=1-\sqrt{2}\\tanx=1+\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)