Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tony
Xem chi tiết
Nguyễn Thiện Minh
Xem chi tiết
Nguyễn Nhật Hạ
Xem chi tiết
ngonhuminh
1 tháng 3 2018 lúc 17:55

n thuộc N

B=x^2 +2x +1 =(x+1)^2

\(A=x^{4n+2}+2.x^{2n+1}+1=\left(x^{2n+1}\right)^2+2.\left(x^{2n+1}\right)+1=\left(x^{2n+1}+1\right)^2\)

\(\dfrac{A}{B}=\left(\dfrac{x^{2n+1}+1}{x+1}\right)^2\)

với n =0 đúng

n >0 =>2n+1 >=3

=> x^(2n+1) =(x+1).g(x) => dpcm

Nguyễn Nhật Hạ
Xem chi tiết
Đinh Đức Hùng
1 tháng 3 2018 lúc 17:23

Ta có :

\(x^{4n+2}+2x^{2n+1}+1=\left(x^{2n+1}\right)^2+2x^{2n+1}+1==\left(x^{2n+1}+1\right)^2\)

Vì \(x^{2n+1}+1⋮x+1\forall x;n\in Z\) nên \(\left(x^{2n+1}+1\right)^2⋮\left(x+1\right)^2=\forall x;n\in Z\)

Hay \(x^{4n+2}+2x^{2n+1}+1⋮x^2+2x+1\)

Nguyễn Nhật Hạ
Xem chi tiết

Đặt \(A=x^{20}+x^{10}+1\)

\(x^{50}+x^{10}+1\)

\(=x^{50}-x^{20}+A\)

\(=x^{20}\left(x^{30}-1\right)+A\)

\(=x^{20}\left(x^{10}-1\right)A+A\)

\(=\left(x^{30}-x^{20}+1\right)A\)

\(\left(x^{30}-x^{20}+1\right)A⋮A\)

\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)

Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Moon Anhs
1 tháng 11 2020 lúc 19:55

bạn có ghi thiếu đề ko vậy?

Khách vãng lai đã xóa
Tuấn
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 12:16

\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)

\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\) 

Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)  với mọi x nguyên

\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên

Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)

\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)