Chứng minh
a)Biểu thức B=x2 -xy+y2 luôn luôn dương với mọi x,y không đồng thời bằng 0
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
x^2-xy+y^2 luôn dương với mọi x,y không đồng thời =0
x^2-xy+y^2
=x^2-2*x*1/2y+1/4y^2+3/4y^2
=(x-1/2y)^2+3/4y^2>0 với mọi x,y thỏa mãn \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Chứng minh rằng biểu thức sau luôn luôn dương với mọi x,y
B=x2-2x+y2+4y+6
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
cho hình thang cân , đáy nhỏ AB đáy lớn CD . Góc nhọn hợp từ hai đường chéo AC và BD bằng \(60^o\)gọi M,N là hình chiếu của B và C lên AC và BD , p là trung điểm cạnh BC . Cm tam giác MNP là tam giác đều
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với.
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với mik đang cần gấp
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
C=x2-2*x*y+3*y2-2*x-10*y+20
mik cần gấp
Chứng minh rằng biểu thức:
A = x(x – 6) + 10 luôn dương với mọi x
B = x2 – 2x + 9y2 – 6y + 3 luôn dương với mọi x, y
`A=x(x-6)+10=x^2-6x+10`
`=x^2 -2.x .3 + 3^2 + 1`
`=(x-3)^2+1 >0 forall x`
`B=x^2-2x+9y^2-6y+3`
`=(x^2-2x+1)+(9y^2-6y+1)+1`
`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.
Chứng minh biểu thức : B=x2 - 12x + 28 luôn dương với mọi giá trị x
B=x^2-12x+6^2-8
=(x-6)^2-8
Biểu thức này ko thể luôn dương nha bạn