Tìm n ϵ Z sao cho 2n - 3 chia hết n + 1
Tìm n ϵ Z sao cho:
a) 25 chia hết cho n + 2
b) 2n + 4 chia hết cho n - 1
c) 1 - 4n chia hết cho n + 3
a) \(25⋮n+2\left(n\in Z\right)\)
\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)
\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)
b) \(2n+4⋮n-1\)
\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)
\(\Rightarrow2n+4-2n+2⋮n-1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)
c) \(1-4n⋮n+3\)
\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)
\(\Rightarrow1-4n+4n+12⋮n+3\)
\(\Rightarrow13⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)
a) n ϵ{−3;−1;−7;3;−27;23}
b) n ∈{0;2;−1;3;−2;4;−5;7}
c) n ϵ {−4;−2;−15;10}
Bài 1:Tìm n ϵ N,biết:
1+2+3+4+...+n+=378
Bài 2:Tìm n ϵ N,sao cho:
a)n+2 chia hết cho n-1
b)2n+7 chia hết cho n+1
c)2n+1 chia hết cho 6-n
d)4n+3 chia hết cho 2n+6
1) Số số hạng là n
Tổng bằng : \(\frac{n\left(n+1\right)}{2}=378\\ \Rightarrow n\left(n+1\right)=756\\ \Rightarrow n\left(n+1\right)=27.28\\ \Rightarrow n=27\)
2) a) \(n+2⋮n-1\\ \Rightarrow n-1+3⋮n-1\\ \Rightarrow3⋮n-1\)
b) \(2n+7⋮n+1\\ \Rightarrow2\left(n+1\right)+5⋮n+1\\ \Rightarrow5⋮n+1\)
c) \(2n+1⋮6-n\\ \Rightarrow2\left(6-n\right)+13⋮6-n\\ \Rightarrow13⋮6-n\)
d) \(4n+3⋮2n+6\\ \Rightarrow2\left(2n+6\right)-9⋮2n+6\\ \Rightarrow9⋮2n+6\)
tìm n ϵ Z để 2n2 + 5n - 1 chia hết cho 2n - 1
Ta có: 2n2+5n-1
=(2n2+2n+2n)+n-1
=2n(n+2)+n-1
=(2n-1)(2n+2)
Vì 2n-1chia hết cho 2n-1 nên suy ra (2n-1)(2n+2) chia hết cho 2n-1
Vậy 2n2+5n-1 chia hết cho 2n-1
Tìm n ϵ Z để 2n2 - n + 2 chia hết cho 2n + 1
Ta có:
\(2n^2-n+2\)
\(=2n^2+n-2n-1+3\)
\(=n.\left(2n+1\right)-\left(2n+1\right)+3\)
\(\Rightarrow n.\left(2n+1\right)⋮\left(2n+1\right)\)
\(\Rightarrow2n+1⋮2n+1\)
\(\Rightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯC\left(3\right).\)
\(\Rightarrow2n+1\in\left\{1;-1;3;-3\right\}.\)
Có 4 trường hợp:
\(\Rightarrow\left[{}\begin{matrix}2n+1=1\\2n+1=-1\\2n+1=3\\2n+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n=0\\2n=-2\\2n=2\\2n=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=-1\\n=1\\n=-2\end{matrix}\right.\)
Vậy \(n\in\left\{0;-1;1;-2\right\}.\)
Chúc bạn học tốt!
HELP ME:
Tìm n ϵ Z . Để n3 - n2 + 2n +7 chia hết cho n2 + 11.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015
1.Tìm số tự nhiên n,sao cho:
a)n+15 chia hết cho n-3 (với n>5)
b)18-2n chia hết cho n+3 (với n bé hoặc bằng 9)
c)3n+13 chia hết cho 2n+3 (với n lớn hơn hoặc bằng 1)
2.Cho a,b ϵ N.Chứng tỏ rằng nếu 7a+2b và 31a+9b cùng chia hết cho 2015 thì a và b cũng chia hết cho 2015