Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Lạc
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 6 2021 lúc 15:45

\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)

\(A=\left\{1;-4\right\}\)

\(B=\left\{2;-1\right\}\)

a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)

Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)

b) \(A\cap B=\varnothing\)

\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)

\(A\cup B=\left\{-4;-1;1;2\right\}\)

\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)

\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)

Huy Hoàng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
15 tháng 6 2017 lúc 12:22

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 21:20

Bài 1:

\(HPT\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\\ \Leftrightarrow a^2+b^2+c^2=0\\ \Leftrightarrow a=b=c=0\left(a^2+b^2+c^2\ge0\right)\\ \Leftrightarrow A=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1+1-1=-1\)

Bài 2: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

Bài 3: Xác định a, b, c để x^3 - ax^2 + bx - c = (x - a) (x-b)(x-c) - Lê Tường Vy

_ Hiro
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2021 lúc 21:49

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

chi pi ku te
Xem chi tiết
Kurosaki Akatsu
11 tháng 1 2017 lúc 15:53

\(\left(a^2-5\right)\left(a^2-10\right)\left(a^2-15\right)\left(a^2-20\right)< 0\)

Có 4 trường hợp .

1) a2 - 5 < 0       Hoặc        2) a2 - 10 < 0        Hoặc      3) a2 - 15 < 0      Hoặc       4) a2 - 20 < 0

=> a2 < 5                         => a2 < 10                         => a2 < 15                        => a2 < 20   

=> a < \(\sqrt{5}\)                => a < \(\sqrt{10}\)               => a < \(\sqrt{15}\)              => a < \(\sqrt{20}\)

Hà My Trần
Xem chi tiết
Ngưu Kim
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 22:00

\(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+\sqrt{b}}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\left(đk:a\ne b,a\ge0,b\ge0\right)\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+\sqrt{b}\right)}.\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\dfrac{2}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2.2}{\left(\sqrt{a}-\sqrt{b}\right)^2\left(a-1\right)}=\dfrac{2}{a-1}\in Z\)

\(\Rightarrow a-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do \(a\ge0\)

\(\Rightarrow a\in\left\{0;2;3\right\}\)

 

Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 22:04

Ta có: \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{2}{a-1}\)

\(=\dfrac{2}{a-1}\)

Để P là số nguyên thì \(a-1\in\left\{1;-1;2;-2\right\}\)

hay \(a\in\left\{2;0;3\right\}\)

lê dạ quỳnh
Xem chi tiết
Mai Anh Pen Tapper
Xem chi tiết
Nguyễn Phương HÀ
30 tháng 6 2016 lúc 8:35

Hỏi đáp Toán