\(\sqrt{16-2\sqrt{55}}\)
Nếu \(\sqrt{16-2\sqrt{55}}\) = \(\sqrt{a}-\sqrt{b}\), với a,b ∈Z thì a − b = ......
\(\sqrt{16-2\sqrt{55}}=\sqrt{11}-\sqrt{5}\)
=>a=11; b=5
=>a-b=6
Tính:
1) \(\sqrt{14-2\sqrt{33}}\)
2) \(\sqrt{12-2\sqrt{35}}\)
3) \(\sqrt{16-2\sqrt{55}}\)
4) \(\sqrt{14-6\sqrt{5}}\)
5) \(\sqrt{17-12\sqrt{2}}\)
6) \(\sqrt{27-12\sqrt{5}}\)
7) \(\sqrt{4+\sqrt{15}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
Cho \(\sqrt{16-2\sqrt{55}}=\sqrt{a}-\sqrt{b}\) . Tính a-b
\(\sqrt{a}-\sqrt{b}=\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}=\sqrt{11}-\sqrt{5}\Rightarrow a-b=6\)
\(\sqrt{16-2\sqrt{55}}\)
\(\sqrt{16-2\sqrt{55}}=\sqrt{5-2\sqrt{5}\sqrt{11}+11}\) \(=\sqrt{\left(\sqrt{5}-\sqrt{11}\right)^2}=\sqrt{5}-\sqrt{11}\)
Tính
a,\(\sqrt{14-2\sqrt{33}}\)
b,\(\sqrt{12-2\sqrt{35}}\)
c,\(\sqrt{16-2\sqrt{55}}\)
d,\(\sqrt{14-6\sqrt{5}}\)
e,\(\sqrt{17-12\sqrt{2}}\)
a) Ta có: \(\sqrt{14-2\sqrt{33}}\)
\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{3}\right|\)
\(=\sqrt{11}-\sqrt{3}\)(Vì \(\sqrt{11}>\sqrt{3}\))
b) Ta có: \(\sqrt{12-2\sqrt{35}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{5}\right|\)
\(=\sqrt{7}-\sqrt{5}\)(Vì \(\sqrt{7}>\sqrt{5}\))
c) Ta có: \(\sqrt{16-2\sqrt{55}}\)
\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{5}\right|\)
\(=\sqrt{11}-\sqrt{5}\)(Vì \(\sqrt{11}>\sqrt{5}\))
d) Ta có: \(\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3-\sqrt{5}\right|\)
\(=3-\sqrt{5}\)(Vì \(3>\sqrt{5}\))
e) Ta có: \(\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|\)
\(=3-2\sqrt{2}\)(Vì \(3>2\sqrt{2}\))
nếu \(\sqrt{16-2\sqrt{55}}=\sqrt{a}-\sqrt{b}\) với \(a,b\in Z\) thì a+b=?
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}=\sqrt{11}-\sqrt{5}\)
suy ra a=11;b=5
suy ra a+b=11+5=16
Nếu \(\sqrt{16-2\sqrt{55}}=\) \(\sqrt{a}-\sqrt{b}\) với \(a,b\)\(EZ\)thì a + b = 16.
Bài 1 : Tính
a) \(\sqrt{16-2\sqrt{55}}\)
b) \(\sqrt{16-8\sqrt{3}}\)
c) \(\sqrt{17+12\sqrt{5}}\)
d) \(\sqrt{35+12\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
f) \(\sqrt{2-\sqrt{3}}\)
g) \(\sqrt{7-\sqrt{33}}\)
Nếu , với
, thì
....
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
=\(\sqrt{11}-\sqrt{5}\)
=> a=11 và b=5
=> a-b=6
1.\(\sqrt{98-16\sqrt{3}}\)
2.\(\sqrt{2-\sqrt{3}}\)
3.\(\sqrt{5-\sqrt{21}}\)
4.\(\sqrt{6-\sqrt{35}}\)
5.\(\sqrt{8-\sqrt{55}}\)
MỌI NGƯỜI ƠI GIÚP MIK VỚI Ạ!!!
bạn nhân biểu thức trong căn với 2 thì sẽ xuất hiện hằng đẳng thức,mình làm cho bạn biểu thức số 2, các biểu thức còn lại tương tự bạn tự làm nhé