a) Ta có: \(\sqrt{14-2\sqrt{33}}\)
\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{3}\right|\)
\(=\sqrt{11}-\sqrt{3}\)(Vì \(\sqrt{11}>\sqrt{3}\))
b) Ta có: \(\sqrt{12-2\sqrt{35}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{5}\right|\)
\(=\sqrt{7}-\sqrt{5}\)(Vì \(\sqrt{7}>\sqrt{5}\))
c) Ta có: \(\sqrt{16-2\sqrt{55}}\)
\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{5}\right|\)
\(=\sqrt{11}-\sqrt{5}\)(Vì \(\sqrt{11}>\sqrt{5}\))
d) Ta có: \(\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3-\sqrt{5}\right|\)
\(=3-\sqrt{5}\)(Vì \(3>\sqrt{5}\))
e) Ta có: \(\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|\)
\(=3-2\sqrt{2}\)(Vì \(3>2\sqrt{2}\))