Chứng minh không có giá trị nào của biến x để biểu thức Q giá trị dương: Q= -9x+24x-18
cho hai đa thức : P(x)=5x^3+6x^2-9x+4 . Q(x)=-5x^3-4x^2+9x+5 . chứng minh rằng : không tồn tại giá trị nào của x để hai đa thức P(x) và Q(x) có cùng giá trị không dương
Chứng minh rằng không có giá trị nào của biến x để các đa thức dưới đây nhận các giá trị dương:
\(P=-x^2+4x-5\)
\(Q=-9x^2+24x-18\)
a) Chứng minh rằng với giá trị bất kỳ của biến x, các đa thức sau đều dương
P(x)= x^2 -6x+10 Q(x)= (x-3)(x-5)+4
b) Chứng minh rằng không có giá trị nào của biến x để các đa thức sau dương
A(x)= 4x-5-x^2 B(x)= 24x-18-9x^2
a.
\(P\left(x\right)=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1>1\forall x\in R\)\(Q\left(x\right)=\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=x^2-8x+16+3=\left(x-4\right)^2+3>0\forall x\in R\)b.
\(A\left(x\right)=4x-5-x^2=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1< 0\forall x\in R\)\(B\left(x\right)=24x-18-9x^2=-\left(9x^2-24x+18\right)=\left(-9x^2-24x+16+2\right)=-\left(3x+4\right)^2-2< 0\forall x\in R\)
a, P(x) =x^2-6x+10=x^2-6x+9+1=(x+3)^2+1>0
Q(x) =(x-3)(x-5)+4=x^2-8x+15+4=x^2-8x+19=x^2-8x+16+3=(x-4)^2+3>0
Kết luận:với bất kì giá trị nào của biến x thì 2 đa thức trên dương
b, A(x) =4x-5-x^2=-x^2+4x-5=-x^2+4x-4-1=-(x-2)^2-1<0
B(x) =24x-18-9x^2=-9x^2+24x-18= -(3x)^2+24x-16-2=-(3x-4)^2-2<0
Kết luận : ko có giá trị nào của biến x mà 2 đa thức trên dương
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
chứng minh các biểu thức sau luôn luôn các giá trị dương với mọi giá trị của biến
a)\(2x^2+2x+1\)
b)\(9x^2-6x+2\)
a)
2x2+2x+1
=(x+1)2+x2
(x+1)2 luôn lớn hơn hoặc =0
dấu "=" xảy ra khi x=-1. mà với x=-1 thì x2=1 => biểu thức trên =1
x2 luôn lớn hơn hoặc =0
dấu "=" xảy ra khi x=0=> (x+1)2=1 => biểu thức trên =1
vậy biểu thức này có giá trị dương ( >0 ) với mọi giá trị của biến
b)9x2-6x+2
=(3x+1)2 +1
ta có: (3x+1)2 luôn lớ hơn hoặc =0
=> (3x+1)2+1 luôn lớn hơn hoặc =1
=> (3x+1)^2+1 luôn dương với mọi giá trị của biến
a) \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2\)
Vì: \(2\left(x+\frac{1}{2}\right)^2\ge0\) với mọi x
=> \(\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2>0\)
Vậy biểu thức trên luôn luôn dương với mọi giá trị của biến
b) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)
Vì: \(\left(3x-1\right)^2\ge0\) với mọi giá trị của x
=> \(\left(3x-1\right)^2+1>0\)
vậy biểu thức trên luôn luôn dương với mọi giá trị của x
a/ \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[x^2+2.\frac{1}{2}.x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+\frac{1}{2}\right]=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]>0\)
b/ \(9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\)
Vậy các biểu thức sau luôn dương với mọi x thuộc R
Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) 1/4 x -x² +2 b) 3x + 2x² +1 c) 9x² -12x + 5 d) ( x+2)² +(x-2)²
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
CMR các biểu thức sau có giá trị âm với mọi giá trị của x:
a) \(-x^2\)+2x-7
b) \(-x^2\)+2x-2
c) \(-9x^2\)+24x-18
chứng minh rằng giá trị của mỗi biểu thức sau luôn dương với mọi giá trị của biến \(^{x^2-x+1}\)(hằng đẳng thức)
= ( x2 - 2 .x . 1/2 +1/4 ) 3/4
= (x-1/2)2 + 3/4 >= 3/4 > 0 nên luôn dương V
học tốt
Ta có:
\(x^2-x+1\)
\(=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\)với \(\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với\(\forall x\)
hay giá trị của mỗi biểu thức trên luôn dương với mọi giá trị của biến
Chứng minh rằng biểu thức sau luôn luôn có giá trị âm với mọi giá trị của biến :
\(-9x^2\)+\(12x\)\(-15\)