Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Bảo
Xem chi tiết
Akai Haruma
14 tháng 7 2023 lúc 13:40

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như thế này gây khó đọc.

Siin
Xem chi tiết
Tram Anh Nguyen
22 tháng 4 2022 lúc 9:53

Bài 1: 

c) |2x - 1| = x + 2

<=> 2x - 1 = +(x + 2) hoặc -(x + 2)

* 2x - 1 = x + 2      

<=> 2x - x = 2 + 1

<=> x = 3

* 2x - 1 = -(x + 2)

<=> 2x - 1 = x - 2

<=> 2x - x = -2 + 1

<=> x = -1

Vậy.....

My Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 22:00

1: Sửa đề: 2/x+2

\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)

=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>4x-3=-3x-6

=>7x=-3

=>x=-3/7(nhận)

2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)

=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)

=>-6x^2+6=2(3x^2-10x+3)

=>-6x^2+6=6x^2-20x+6

=>-12x^2+20x=0

=>-4x(3x-5)=0

=>x=5/3(nhận) hoặc x=0(nhận)

3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)

=>x*19/6=35/12

=>x=35/38

bill gates trần
Xem chi tiết
Phong trương
6 tháng 2 2019 lúc 21:17

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

Nguyễn Lê Phước Thịnh
14 tháng 2 2023 lúc 8:15

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Nghi Đình
4 tháng 5 2018 lúc 22:42

1. \(x^4-2x^3+3x^2-2x+1=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)

\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)

\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0

\(\Leftrightarrow\) x - 1 = 0 và x = 0

\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)

Vậy phương trình vô nghiệm.

Nguyễn Nghi Đình
4 tháng 5 2018 lúc 22:53

2. \(\left(x^2-4\right)^2=8x+1\)

\(\Leftrightarrow x^4-8x^2+16=8x+1\)

\(\Leftrightarrow x^4-8x^2-8x+15=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)

\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)

\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0

1) x - 1 = 0 \(\Leftrightarrow\) x = 1

2) x - 3 = 0 \(\Leftrightarrow\) x = 3

3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)

Vậy tập nghiệm của pt là S = {1;3}.

Tran yen nhi
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
ILoveMath
28 tháng 11 2021 lúc 16:20

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

Nguyễn Thị Kim
Xem chi tiết
đề bài khó wá
8 tháng 4 2020 lúc 12:55

\(\left(x-1\right)^2-\left(x+1\right)^2=2\left(x+3\right)\)

\(\Leftrightarrow\left(x-1+x+1\right)\left(x-1-x-1\right)=2\left(x+3\right)\)

\(\Leftrightarrow2x\left(-2\right)=2\left(x+3\right)\)

\(\Leftrightarrow-4x=2x+6\)

\(\Leftrightarrow-6x=6\)

\(\Leftrightarrow x=-1\)
2) \(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)

\(\Leftrightarrow\left(2x-1+2x+1\right)\left(2x-1-2x-1\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow4x\left(-2\right)-4x+12=0\)

\(\Leftrightarrow-12x=-12\)

\(\Leftrightarrow x=1\)

3)\(\left(2x+3\right)^2-\left(2x+3\right)\left(2x-4\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x+3-2x+4\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow7\left(2x+3\right)+x^2-4x+4=0\)

\(\Leftrightarrow x^2+10x+25=0\)

\(\Leftrightarrow\left(x+5\right)^2=0\)

\(\Leftrightarrow x=-5\)

4) \(8x^3-\left(x+1\right)^3=3x-3\)

\(\Leftrightarrow8x^3-\left(x^3+3x+3x^2+1\right)-3x+3=0\)

\(\Leftrightarrow7x^3-3x^2-6x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x^2+4x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2+3\sqrt{2}}{7}\\x=\frac{-2-3\sqrt{2}}{7}\end{matrix}\right.\)

5)\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\left(3x\right)^3-2^3-\left(\left(3x\right)^3-1^3\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)=x-4\)

\(\Leftrightarrow-7=x-4\)

\(\Leftrightarrow x=-3\)

Huỳnh Thị Thanh Ngân
Xem chi tiết

Sửa đề: \(\left(x-1\right)^2-\left(3x+2\right)\left(x-12\right)=\left(x^2+1\right)\left(x-2\right)-x^2\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(3x^2-36x+2x-24\right)=x^3-2x^2+x-2-x^2\)

=>\(x^3-3x^2+3x-1-3x^2+34x+24=x^3-3x^2+x-2\)

=>\(x^3-6x^2+37x+23-x^3+3x^2-x+2=0\)

=>\(-3x^2+36x+25=0\)

=>\(x=\dfrac{18\pm\sqrt{399}}{3}\)