Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{9n+5}{2n+1}\) luôn tối giản
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{2n+5}{n+2}\) luôn tối giản
Gọi d là ƯCLN(2n+5;n+2)
Ta có 2n+5\(⋮\)d
n+2\(⋮\)d=>2*(n+2)\(⋮\)d=>2n+4\(⋮\)d
=>[(2n+5)-(2n+4)]\(⋮\)d
=>[2n+5-2n-4]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(2n+5;n+2)=1 nên phân số \(\frac{2n+5}{n+2}\) luôn tối giản(nEN)
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{2n-1}{8n-3}\) luôn tối giản
Gọi d là ƯCLN(2n-1;8n-3)
ta có 2n-1\(⋮\)d;8n-3\(⋮\)d
=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d
=>8n-4\(⋮\)d;8n-3\(⋮\)d
=>[(8n-4)-(8n-3)]\(⋮\)d
=>[8n-4-8n+3]\(⋮\)d
=>-1\(⋮\)d
=>d=1
Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)
Gọi d là UCLN(2n-1;8n-3)
=>2n-1 chia hết cho d và 8n-3 chia hết cho d
=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d
=>8n-4 chia hết cho d và 8n-3 chia hết cho d
=>8n-4-8n+3 chia hết cho d
=>-1 chia hết cho d =>d=1
=>điều phải chứng minh
Gọi d là ƯCLN( 2n-1;8n-3)
Ta có: 2n-1 chia hết cho d; 8n-3 chia hết cho d
=> 4(2n-1) chia hết cho d; 8n-3 chia hết cho d
=> 8n-4 chia hết cho d; 8n-3 chia hết cho d
=> d ϵ ƯC( 8n-4;8n-3)
Mà Ư CLN(8n-4;8n-3) = 1
=> d=1
=> Với mọi số tự nhiên n thì phân số 2n-1/8n-3 luôn tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng phân số sau luôn tối giản với mọi số tự nhiên n : \(\frac{2n+1}{2n-1}\)
vì thương của 2 số tự nhiên liên tiếp (ví dụ 11 và 12 khi viết thành phân số là 11/12 hoặc12/11)thì ta luôn được phân số tối giản.cậu có thể lấy nhiều ví dụ hơn nhưng vẫn như thế thôi cái này cô tớ dạy từ năm lớp 4
gọi d là ước chung lơn nhất của 2n+1 và 2n-1.
suy ra 2n+1chia hết cho d; 2n-1 chia hết cho d. > (2n+1)-(2n-1)=2 chia hết cho d.
hay 2 chia hết cho d.
mà 2n+1 và 2n-a lẻ.
suy ra d=1
DPCM
Gọi UCLN của 2n+1 và 2n-1 là a
Ta có: 2n+1 và 2n-1 là 2 số lẻ liên tiếp( Vì 2n luôn luôn là số chẵn nên trừ hay cộng thêm 1 sẽ là số lẻ)
Mà 2 số lẻ liên tiếp có UCLN là 1. Suy ra a=1
Vậy phân số 2n+1/2n-1 là phân số tối giản với mọi số tự nhiên n.
chứng minh rằng với mọi số tự nhiên n khác 0 thì 2n+1/ 4n luôn tối giản
GỌi d là ƯC(2n+1 ; 4n)
Khi đó: 2n+1 chia hết cho d 4n chia hết cho d
<=> 8n + 4 chia hết cho d
GỌi d là ƯC(2n+1 ; 4n)
Khi đó: 2n+1 chia hết cho d 4n chia hết cho d
<=> 8n + 4 chia hết cho d
GỌi d là ƯC(2n+1 ; 4n)
Khi đó: 2n+1 chia hết cho d 4n chia hết cho d
<=> 8n + 4 chia hết cho d
chứng minh rằng với mọi số tự nhiên n thì 2n+1/8n+6 là phân số tối giản
A = \(\dfrac{2n+1}{8n+6}\) (n \(\ne\) - \(\dfrac{3}{4}\))
Gọi ước chung lớn nhất của 2n + 1 và 8n + 6 là d
Ta có : \(\left\{{}\begin{matrix}2n+1⋮d\\8n+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}8n+4⋮d\\8n+6⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được: 8n + 6 - 8n - 4 ⋮ d ⇒ 2 \(⋮\) d ⇒ d = { 1; 2}
Nếu d = 2 ta có: 2n + 1 ⋮ 2 ⇒ 1 ⋮ 2 ( vô lý)
Vậy d = 1 nên ước chung lớn nhất của 2n + 1 và 8n + 6 là 1
Hay phân số: \(\dfrac{2n+1}{8n+6}\) là phân số tối giản điều phải chứng minh
Chứng minh rằng với mọi số tự nhiên \(n\) thì phân số \(\dfrac{10n^2+9n+4}{20n^2+20n+9}\) tối giản
Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản
\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)
\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)
\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)
\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))
\(\Rightarrow dpcm\)
Chứng minh rằng với mọi số tự nhiên thì phân số tối giản
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{10n^2+9n+4}{20n^2+20n+9}\)tối giản