Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Luffy Không Rõ Họ Tên

Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{2n-1}{8n-3}\) luôn tối giản

Phạm Nguyễn Tất Đạt
15 tháng 5 2016 lúc 18:19

Gọi d là ƯCLN(2n-1;8n-3)

ta có 2n-1\(⋮\)d;8n-3\(⋮\)d

=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d

=>8n-4\(⋮\)d;8n-3\(⋮\)d

=>[(8n-4)-(8n-3)]\(⋮\)d

=>[8n-4-8n+3]\(⋮\)d

=>-1\(⋮\)d

=>d=1

Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)

Đặng Minh Triều
15 tháng 5 2016 lúc 18:30

Gọi d là UCLN(2n-1;8n-3)

=>2n-1 chia hết cho d và 8n-3 chia hết cho d

=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d

=>8n-4 chia hết cho d và 8n-3 chia hết cho d

=>8n-4-8n+3 chia hết cho d

=>-1 chia hết cho d =>d=1

=>điều phải chứng minh

Huỳnh Thắm
15 tháng 5 2016 lúc 19:19

Gọi d là ƯCLN( 2n-1;8n-3)

Ta có:  2n-1 chia hết cho d; 8n-3 chia hết cho d

        => 4(2n-1) chia hết cho d; 8n-3 chia hết cho d

        => 8n-4 chia hết cho d; 8n-3 chia hết cho d

        => d ϵ ƯC( 8n-4;8n-3)

Mà Ư CLN(8n-4;8n-3) = 1

=> d=1

=> Với mọi số tự nhiên n thì phân số 2n-1/8n-3 luôn tối giản

Đừng Hỏi Tên Tôi
8 tháng 3 2017 lúc 22:00

gọi d là UCLN[2n-1,8n-3]

suy ra 2n-1 chia hết cho d và 8n-3 chia hết cho d

mà 2n-1 chia hết cho d nên 4[2n-1] chia hết cho d hay 8n-4 chia hết cho d

vậy [8n-3] - [8n-4] chia hết cho d hay 1 chia hết cho d vì 1 chia hết cho mỗi số tự nhiên 1 nên d =1 vậy phân số đó tối giản


Các câu hỏi tương tự
Luffy Không Rõ Họ Tên
Xem chi tiết
Luffy Không Rõ Họ Tên
Xem chi tiết
Luffy Không Rõ Họ Tên
Xem chi tiết
Luffy Không Rõ Họ Tên
Xem chi tiết
Luffy Không Rõ Họ Tên
Xem chi tiết
agelina jolie
Xem chi tiết
Luffy Phạm
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
Trần Huyền Trang
Xem chi tiết