xét hàm số y=\(ln\left(e^x+\sqrt{1+e^{2x}}\right)\)
Tính đạo hàm của hàm số sau:
a) \(y=ln\left(1+\sqrt{3x-1}\right)\)
b) \(y=log\left(2sin^2x-1\right)\)
c) \(y=3^{x^3+3x+1}e^x\)
a.
\(y'=\dfrac{\left(1+\sqrt{3x-1}\right)'}{1+\sqrt{3x-1}}=\dfrac{3}{2\left(1+\sqrt{3x-1}\right)\sqrt{3x-1}}\)
b.
\(y'=\dfrac{\left(2sin^2x-1\right)'}{\left(2sin^2x-1\right).ln10}=\dfrac{2sin2x}{\left(2sin^2x-1\right)ln10}\)
c.
\(y'=\left(3x^2+3\right)3^{x^3+3x+1}.e^x.ln3+3^{x^3+3x+1}.e^x\)
Tính đạo hàm của mỗi hàm số sau:
a) \(y = \left( {{x^2} + 2x} \right)\left( {{x^3} - 3x} \right)\)
b) \(y = \frac{1}{{ - 2x + 5}}\)
c) \(y = \sqrt {4x + 5} \)
d) \(y = \sin x\cos x\)
e) \(y = x{e^x}\)
f) \(y = {\ln ^2}x\)
a: \(y'=\left(x^2+2x\right)'\left(x^3-3x\right)+\left(x^2+2x\right)\left(x^3-3x\right)'\)
\(=\left(2x+2\right)\left(x^3-3x\right)+\left(x^2+2x\right)\left(3x^2-3\right)\)
\(=2x^4-6x^2+2x^3-6x+3x^4-3x^2+6x^3-6x\)
\(=5x^4+8x^3-9x^2-12x\)
b: y=1/-2x+5
=>\(y'=\dfrac{2}{\left(2x+5\right)^2}\)
c: \(y'=\dfrac{\left(4x+5\right)'}{2\sqrt{4x+5}}=\dfrac{4}{2\sqrt{4x+5}}=\dfrac{2}{\sqrt{4x+5}}\)
d: \(y'=\left(sinx\right)'\cdot cosx+\left(sinx\right)\cdot\left(cosx\right)'\)
\(=cos^2x-sin^2x=cos2x\)
e: \(y=x\cdot e^x\)
=>\(y'=e^x+x\cdot e^x\)
f: \(y=ln^2x\)
=>\(y'=\dfrac{\left(-1\right)}{x^2}=-\dfrac{1}{x^2}\)
Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)
Vậy hàm số lẻ
\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)
Vậy hàm số chẵn
\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)
Vậy hàm số lẻ
\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)
Vậy hàm số lẻ
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = x{e^{2x}};\)
b) \(y = \ln \left( {2x + 3} \right).\)
a: \(y=x\cdot e^{2x}\)
=>\(y'=\left(x\cdot e^{2x}\right)'\)
\(=x\cdot\left(e^{2x}\right)'+x'\cdot\left(e^{2x}\right)\)
\(=e^{2x}+2\cdot x\cdot e^{2x}\)
\(y''=\left(e^{2x}+2\cdot x\cdot e^{2x}\right)'\)
\(=\left(e^{2x}\right)'+\left(2\cdot x\cdot e^{2x}\right)'\)
\(=4\cdot e^{2x}+4\cdot x\cdot e^{2x}\)
b: \(y=ln\left(2x+3\right)\)
=>\(y'=\dfrac{\left(2x+3\right)'}{\left(2x+3\right)}=\dfrac{2}{2x+3}\)
=>\(y''=\left(\dfrac{2}{2x+3}\right)'=\dfrac{2\left(2x+3\right)'-2'\left(2x+3\right)}{\left(2x+3\right)^2}\)
\(=\dfrac{4}{\left(2x+3\right)^2}\)
Kiểm tra xem hàm số nào là một nguyên hàm của hàm số còn lại trong mỗi cặp số sau :
a) \(f\left(x\right)=\ln\left(x+\sqrt{1+x^2}\right)\) và \(g\left(x\right)=\dfrac{1}{\sqrt{1+x^2}}\)
b) \(f\left(x\right)=e^{\sin x}\cos x\) và \(g\left(x\right)=e^{\sin x}\)
c) \(f\left(x\right)=\sin^2\dfrac{1}{x}\) và \(g\left(x\right)=-\dfrac{1}{x^2}\sin\dfrac{2}{x}\)
d) \(f\left(x\right)=\dfrac{x-1}{\sqrt{x^2-2x+2}}\) và \(g\left(x\right)=\sqrt{x^2-2x+2}\)
e) \(f\left(x\right)=x^2e^{\dfrac{1}{x}}\) và \(g\left(x\right)=\left(2x-2\right)e^{\dfrac{1}{x}}\)
Xét tính đơn điệu của hàm số :
\(y=x+\ln\left(1-2x\right)\)
Tập xác định \(x< \frac{1}{2}\)
Ta có : \(y'=1-\frac{2}{1-2x}=\frac{-1-2x}{1-2x}\Rightarrow y'=0\Leftrightarrow x=-\frac{1}{2}\)
Hàm số đồng biến trên \(\left(-\infty;-\frac{1}{2}\right)\)
Hàm số nghịch biến trên \(\left(-\frac{1}{2};\frac{1}{2}\right)\)
Cho hàm số \(f\left( x \right) = 2x - \sin x,g\left( x \right) = \sqrt {x - 1} \).
Xét tính liên tục hàm số \(y = f\left( x \right).g\left( x \right)\) và \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\).
• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).
Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).
• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)
ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)
Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).
Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1} = \sqrt {1 - 1} = 0 = g\left( 1 \right)\)
Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).
Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).
• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)
Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).
• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)
Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).
Tìm đạo hàm của mỗi hàm số sau:
a) \(y = 4{x^3} - 3{x^2} + 2x + 10\)
b) \(y = \frac{{x + 1}}{{x - 1}}\)
c) \(y = - 2x\sqrt x \)
d) \(y = 3\sin x + 4\cos x - \tan x\)
e) \(y = {4^x} + 2{e^x}\)
f) \(y = x\ln x\)
a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)
b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)
c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)
\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)
d: \(y'=\left(3sinx+4cosx-tanx\right)\)'
\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)
e: \(y'=\left(4^x+2e^x\right)'\)
\(=4^x\cdot ln4+2\cdot e^x\)
f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)
Tính đạo hàm của các hàm số sau:
a) \(y = {\left( {\frac{{2x - 1}}{{x + 2}}} \right)^5}\)
b) \(y = \frac{{2x}}{{{x^2} + 1}}\);
c) \(y = {e^x}{\sin ^2}x\);
d) \(y = \log (x + \sqrt x )\).
tham khảo:
a)\(y'\left(x\right)=5\left(\dfrac{2x-1}{x+2}\right)^4.\dfrac{\left(x+2\right)\left(2\right)-\left(2x-1\right).1}{\left(x+2\right)^2}\)
\(=\dfrac{10\left(2x-1\right)\left(x+2\right)^3}{\left(x+2\right)^4}=\dfrac{20x-50}{\left(x+2\right)^4}\)
b)\(y'\left(x\right)=\dfrac{2\left(x^2+1\right)-2x\left(2x\right)}{\left(x^2+1\right)^2}\)\(=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\)
c)\(y'\left(x\right)=e^x.2sinxcosx+e^xsin^2x.2cosx\)
\(=2e^xsinx\left(cosx+sinxcosx\right)\)
\(=2e^xsinxcos^2x\)
d)\(y'\left(x\right)=\dfrac{1}{x\sqrt{x}}.\left(+\dfrac{1}{2\sqrt{x}}\right)\)
\(=\dfrac{1}{\sqrt{x}\left(2\sqrt{x}+\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(3\sqrt{x}+2\right)}\)