Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:48

a/

\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x-4cosx=0\)

\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\sinx-\sqrt{3}cosx=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=1\)

\(\Leftrightarrow x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{5\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:51

b/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)=sinx-\sqrt{3}cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\sqrt{3}cosx\left(1\right)\\sinx+\sqrt{3}cosx=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

\(\left(2\right)\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:54

c/

\(\Leftrightarrow sin6x\left(cos3x-1-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\Rightarrow x=\frac{k\pi}{6}\\cos3x-sin3x=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin3x-cos3x=-1\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\3x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\frac{\pi}{2}+\frac{k2\pi}{3}\end{matrix}\right.\)

Măm Măm
Xem chi tiết
Hồng Phúc
28 tháng 9 2021 lúc 22:06

a, \(sin4x.cosx-sin3x=0\)

\(\Leftrightarrow\dfrac{1}{2}sin5x+\dfrac{1}{2}sin3x-sin3x=0\)

\(\Leftrightarrow sin5x=sin3x\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=3x+k2\pi\\5x=\pi-3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)

Hồng Phúc
28 tháng 9 2021 lúc 22:08

b, \(sin2x+\sqrt{3}cos2x=\sqrt{2}\)

\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k2\pi\\2x+\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)

Tô Mì
Xem chi tiết
2611
13 tháng 9 2023 lúc 21:55

`cos 2x+\sqrt{3}sin 2x+\sqrt{3}sin x-cos x=4`

`<=>1/2 cos 2x+\sqrt{3}/2 sin 2x+\sqrt{3}/2 sin x-1/2 cos x=2`

`<=>sin(\pi/6 +2x)+sin(x-\pi/6)=2`

Vì `-1 <= sin (\pi/6 +2x) <= 1`

     `-1 <= sin (x-\pi/6) <= 1`

 Dấu "`=`" xảy ra `<=>{(sin(\pi/6+2x)=1),(sin(x-\pi/6)=1):}`

        `<=>{(\pi/6+2x=\pi/2+k2\pi),(x-\pi/6=\pi/2+k2\pi):}`

        `<=>{(x=\pi/6+k\pi),(x=[2\pi]/3+k2\pi):}`    `(k in ZZ)`

 

Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Thầy Đức Anh
Xem chi tiết
Bùi Minh Hằng
20 tháng 12 2021 lúc 9:17
Khách vãng lai đã xóa
Bùi Minh Hằng
20 tháng 12 2021 lúc 9:21
Khách vãng lai đã xóa
Nguyễn Yến Nhi
20 tháng 12 2021 lúc 9:33

x=π/2+kπ

x=π/18+kπ/9

Khách vãng lai đã xóa
Tường Nguyễn Thế
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 10 2019 lúc 7:29

ĐKXĐ: ....

\(\Leftrightarrow\frac{1-2\sqrt{2}\left(sin2x+cos2x\right)}{sin4x}=\frac{6sin^2\left(x-\frac{\pi}{8}\right)}{cos^2\left(x-\frac{\pi}{8}\right)}\)

\(\Leftrightarrow\frac{1-2\sqrt{2}\left(sin2x+cos2x\right)}{sin4x}=\frac{6\left(1-cos\left(2x-\frac{\pi}{4}\right)\right)}{1+cos\left(2x-\frac{\pi}{4}\right)}\)

\(\Leftrightarrow\frac{1-2\sqrt{2}\left(sin2x+cos2x\right)}{sin4x}=\frac{6\left(\sqrt{2}-\left(sin2x+cos2x\right)\right)}{\sqrt{2}+sin2x+cos2x}\)

Đặt \(sin2x+cos2x=a\Rightarrow sin4x=a^2-1\)

\(\frac{1-2\sqrt{2}a}{a^2-1}=\frac{6\sqrt{2}-6a}{\sqrt{2}+a}\Leftrightarrow6a^3-8\sqrt{2}a^2-9a+7\sqrt{2}=0\)

\(\Leftrightarrow\left(2a-\sqrt{2}\right)\left(6a^2-5\sqrt{2}a-14\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{\sqrt{2}}{2}\\6a^2-5\sqrt{2}a-14=0\end{matrix}\right.\)

Nghiệm sau dị thật