Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Kiều Quỳnh Anh
Xem chi tiết
ILoveMath
16 tháng 2 2022 lúc 14:58

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)

DAI HUYNH
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
25 tháng 12 2022 lúc 10:31

\(a,\dfrac{1}{2}x=3+2\)

\(\dfrac{1}{2}x=5\)

\(x=5\div\dfrac{1}{2}\)

\(x=10\)

\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)

\(\dfrac{1}{4}x^2-6=10\)

\(\dfrac{1}{4}x^2=10+6\)

\(\dfrac{1}{4}x^2=16\)

\(x^2=16\div\dfrac{1}{4}\)

\(x^2=64\)

\(x^2=\left(8\right)^2\)

\(\Rightarrow x=8\)

Minh harry
Xem chi tiết
Yeutoanhoc
24 tháng 8 2021 lúc 16:25

`a)sqrt{4+sqrt7}-sqrt{4-sqrt7}`

`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`

`=sqrt{(7+2sqrt7+1)/2}-sqrt{(7-2sqrt7+1)/2}`

`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7-1)^2/2}`

`=(sqrt7+1)/sqrt2-(sqrt7-1)/sqrt2`

`=2/sqrt2=sqrt2`

`b)sqrt{4--sqrt15}-sqrt{4+sqrt15}`

`=sqrt{(8-2sqrt15)/2}-sqrt{(8+2sqrt15)/2}`

`=sqrt{(5-2sqrt{5.3}+3)/2}-sqrt{(5+2sqrt{5.3}+3)/2}`

`=sqrt{(sqrt5-sqrt3)^2/2}-sqrt{(sqrt5+sqrt3)^2/2}`

`=(sqrt5-sqrt3)/sqrt2-(sqrt5+sqrt3)/sqrt2`

`=(-2sqrt3)/sqrt2=-sqrt6`

`c)sqrt{2+sqrt3}+sqrt{2-sqrt3}`

`=sqrt{(4+2sqrt3)/2}+sqrt{(4-2sqrt3)/2}`

`=sqrt{(3+2sqrt3+1)/2}+sqrt{(3-2sqrt3+1)/2}`

`=sqrt{(sqrt3+1)^2/2}+sqrt{(sqrt3-1)^2/2}`

`=(sqrt3+1)/sqrt2+(sqrt3-1)/sqrt2`

`=(2sqrt3)/sqrt2=sqrt6`

`d)sqrt{9+sqrt17}-sqrt{9-sqrt17}`

`=sqrt{(18+2sqrt17)/2}-sqrt{(18-2sqrt17)/2}`

`=sqrt{(17+2sqrt17+1)/2}-sqrt{(17-2sqrt17+1)/2}`

`=sqrt{(sqrt17+1)^2/2}-sqrt{(sqrt17-1)^2/2}`

`=(sqrt17+1)/sqrt2-(sqrt17-1)/sqrt2`

`=2/sqrt2=sqrt2`

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 0:55

a: Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\)

b: Ta có: \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

Nguyễn Thị Yến Vy
Xem chi tiết
Incursion_03
20 tháng 6 2019 lúc 8:48

\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{5}-1\right).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=\sqrt{9-5}\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}\)

\(=2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\)

\(=2\left(5-1\right)\)

\(=8\)

ILoveMath
Xem chi tiết
Nguyễn Thị Lan Hương
16 tháng 8 2021 lúc 14:40

\(\sqrt[3]{53\sqrt{5}+124}+\sqrt[3]{32\sqrt{5}-72}\)

\(=\sqrt[3]{\left(\sqrt{5}\right)^3+3.5.4+3.\sqrt{5}.4+4^3}+\sqrt[3]{\left(\sqrt{5}\right)^3-3.5.3+3.\sqrt{5}.3^2-3^3}\)

\(=\sqrt[3]{\left(\sqrt{5}+4\right)^3}+\sqrt[3]{\left(\sqrt{5}-3\right)^3}\)

\(=\sqrt{5}+4+\sqrt{5}-3\)

\(=2\sqrt{5}+1\)

Nguyễn Thị Yến Vy
Xem chi tiết
Thanh Tùng DZ
20 tháng 6 2019 lúc 9:29

Ta có : \(94-42\sqrt{5}=45-2.7.3\sqrt{5}+49=\left(3\sqrt{5}\right)^2-2.7.3\sqrt{5}+7^2=\left(7-3\sqrt{5}\right)^2\)

\(94+42\sqrt{5}=\left(7+3\sqrt{5}\right)^2\)

\(\Rightarrow\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

\(=\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\)

phan anh thư
Xem chi tiết
Nguyễn Lừ Thảm
26 tháng 6 2023 lúc 20:38

Giải

Ta có:

\(x=\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\)

Khi đó:

\(x^2=\left(\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\right)^2\\ =2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\\ =8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-3\left(2+\sqrt{3}\right)}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{6-3\sqrt{3}}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-\sqrt{2}.\sqrt{12-6\sqrt{3}}\\ =8-\sqrt{2}.\left(\sqrt{4+2\sqrt{3}}+\sqrt{12-6\sqrt{3}}\right)\\ =8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}+\sqrt{9-2.3\sqrt{3}+\left(\sqrt{3}\right)^2}\right)\\ 8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(3-\sqrt{3}\right)^2}\right)\\ =8-\sqrt{2}.\left(\sqrt{3}+1+3-\sqrt{3}\right)\\ =8-4\sqrt{2}\\ \Rightarrow x^4-16x^2=\left(8-4\sqrt{2}\right)^2-16.\left(8-4\sqrt{2}\right)\\ =96-64\sqrt{2}-128+64\sqrt{2}=-32\)

Vậy \(S=-32\)

Tiểu Anh
Xem chi tiết
ILoveMath
22 tháng 8 2021 lúc 16:34

bạn viết lại đề đi

Tiểu Anh
22 tháng 8 2021 lúc 16:43

đề là tìm x ạ

 

Nguyễn Việt Lâm
22 tháng 8 2021 lúc 17:24

ĐKXĐ: \(x\ge2\)

\(\sqrt{x-2-4\sqrt{x-2}+4}+\sqrt{x-2-6\sqrt{x-2}+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{x-2}-2\right|+\left|\sqrt{x-2}-3\right|=5\)

- TH1:

\(2\le x\le6\)

\(\Rightarrow2-\sqrt{x-2}+3-\sqrt{x-2}=5\)

\(\Leftrightarrow\sqrt{x-2}=0\Rightarrow x=2\)

TH2: \(6\le x\le11\)

\(\Rightarrow\sqrt{x-2}-2+3-\sqrt{x-2}=5\Leftrightarrow1=5\) (vô nghiệm)

TH3: \(x>11\)

\(\Rightarrow\sqrt{x-2}-2+\sqrt{x-2}-3=5\)

\(\Leftrightarrow2\sqrt{x-2}=10\Rightarrow\sqrt{x-2}=5\)

\(\Rightarrow x=27\)

Vậy \(\left[{}\begin{matrix}x=2\\x=27\end{matrix}\right.\)

Nguyễn thị thanh ngân
Xem chi tiết
Trần Ái Linh
16 tháng 12 2020 lúc 22:37

Đặt \(A=\sqrt{\sqrt2+2\sqrt{\sqrt2-1}}+\sqrt{\sqrt2-2\sqrt{\sqrt2+1}}\).

\(A=\sqrt{\sqrt2 +2\sqrt{\sqrt2-1}}+\sqrt{\sqrt2 -2\sqrt{\sqrt2+1}}\\=> A^2=\sqrt2+2\sqrt{\sqrt2-1}+\sqrt2-2\sqrt{\sqrt2+1}\\=2\sqrt2+2\sqrt{(\sqrt2+1)(\sqrt2-1)}\\=2\sqrt2+2\\=>A=\sqrt{2\sqrt2+2}\)