rút gọn biểu thức sau
\(\left(log_a^b+log^a_b+2\right)\left(log_a^b-log^a_{ba}\right)log^a_b-1\)
help me
rút gọn
a) A=\(\left(\log_{^b_a}+log^a_b+2\right)\left(log^b_a-log^b_{b.a}\right)log^a_b=1\)
b) B=\(\sqrt{log^b_a+log^a_b+2}\left(log^b_a-log^b_{ab}\right)\sqrt{log^b_a}\)
Lời giải:
Đặt \(\log_ab=x\Rightarrow \log_ba=\frac{1}{x}\)
a)
\(A=(x+\frac{1}{x}+2)(x-\frac{1}{x}).\frac{1}{x}\)
\(\Leftrightarrow A=(1+\frac{1}{x^2}+2x)(x-\frac{1}{x})=\left(1+\frac{1}{x}\right)^2(x-\frac{1}{x})\)
\(\Leftrightarrow A=(1+\log_ba)^2(\log_ab-\log_ba)\)
-------------------------------------------------------
b) Điều kiện: \(x>0\)
Có \(1=\log_{ab}b.\log_b(ab)=\log_{ab}b(\log_ba+\log_bb)=\log_{ab}b(\frac{1}{x}+1)\)
\(\Rightarrow \log_{ab}b=\frac{x}{x+1}\)
Như vậy:
\(B=\sqrt{x+\frac{1}{x}+2}(x-\frac{x}{x+1})\sqrt{x}\)
\(\Leftrightarrow B=\sqrt{x^2+1+2x}(x-\frac{x}{x+1})=|x+1|.\frac{x^2}{x+1}\)
\(=(x+1)\frac{x^2}{x+1}=x^2=\log_a^2b\) (do \(x>0)\)
rút gọn biểu thức sau
\(log_2\left(2a^2\right)+\left(log_2^a\right)a^{log_a\left(log_2^a+1\right)}+\frac{1}{2}log^2_2a^4\)
ta có:
\(log^{\left(2a^2\right)}_2+\left(log_2^a\right)a^{log_a^{\left(log^a_1+1\right)}}+\frac{1}{2}log^2_2a^4=log_2^2+log_2^{a^2}+log_2^a\left(log^a_2+1\right)+\frac{1}{2}log^2_2a^4\)
\(=1+2log^a_2+log^a_2\left(1+log^a_2\right)+2log^2a_2\)
\(=3log^2_2a+3log^a_2+1\)
Rút gọn biểu thức: \(A = {\log _2}\left( {{x^3} - x} \right) - {\log _2}\left( {x + 1} \right) - {\log _2}\left( {x - 1} \right)\,\,\,\,\left( {x > 1} \right).\)
\(A=log_2\left(x^3-x\right)-log_2\left(x+1\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x^3-x}{x+1}\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{x+1}\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)=log_2x\)
Rút gọn các biểu thức sau :
\(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)
Ta có \(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{1}{\log_aab}\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{1}{1+\log_ab}\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{\log_ba}{\log_ba+1}\right)-\log_ba\)
\(=\log_ba+1-\log_ba=1\)
Rút gọn biểu thức sau :
\(R=\log_22x^2+\left(\log_2x\right).x^{\log_x\left(\log_2x+1\right)}+\frac{1}{2}\log^2_4x^4\)
\(R=\log_22x^2+\left(\log_2x\right)x^{\log_x\left(\log_2x+1\right)}+\frac{1}{2}\log^2_4x^4\)
\(=1+2\log_2x+\left(\log_2x\right)\left(\log_2x+1\right)+2\log^2_2x\)
\(=3\log^2_2x+3\log_2x+1\)
45/002
Cho m = \(log_a\left(\sqrt[3]{ab}\right)\), với a>1, b>1 và P = \(log^2_ab+16log_ba\). Tìm m sao cho P đạt giá trị nhỏ nhất.
\(m=\frac{1}{3}log_a\left(ab\right)=\frac{1}{3}+\frac{1}{3}log_ab\)
\(\Rightarrow log_ab=3m-1>0\)
\(P=\left(log_ab\right)^2+\frac{16}{log_ab}=\left(3m-1\right)^2+\frac{16}{3m-1}\)
\(P=\left(3m-1\right)^2+\frac{8}{3m-1}+\frac{8}{3m-1}\ge3\sqrt[3]{\frac{64\left(3m-1\right)^2}{\left(3m-1\right)^2}}=12\)
\(P_{min}=12\) khi \(\left(3m-1\right)^3=8\Rightarrow m=1\)
Tìm các giá trị của \(x\) để biểu thức sau có nghĩa:
a) \({\log _3}\left( {1 - 2{\rm{x}}} \right)\);
b) \({\log _{x + 1}}5\).
a)
Điều kiện để $1-2x > 0$ (đối số dương) là:
$1 > 2x$
$x < \frac{1}{2}$
Vậy, để biểu thức $log_3(1-2x)$ có nghĩa, giá trị của $x$ phải nhỏ hơn $\frac{1}{2}$.
b)
Điều kiện để $x+1 \neq 0$ và $x+1 \neq 1$ là:
$x \neq -1$ và $x \neq 0$
Vậy, để biểu thức $log_{x+1}5$ có nghĩa, giá trị của $x$ không được bằng -1 hoặc 0.
Cho hai số thực dương a, b với \(a \ne 1\). Khẳng định nào sau đây là đúng?
A. \({\log _a}\left( {{a^3}{b^2}} \right) = 3 + {\log _a}b\).
B. \({\log _a}\left( {{a^3}{b^2}} \right) = 3 + 2{\log _a}b\).
C. \({\log _a}\left( {{a^3}{b^2}} \right) = \frac{3}{2} + {\log _a}b\).
D. \({\log _a}\left( {{a^3}{b^2}} \right) = \frac{1}{3} + \frac{1}{2}{\log _a}b\).
\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)
=>B
Giải các bất phương trình sau:
a) \({\log _2}\left( {x - 2} \right) < 2\);
b) \(\log \left( {x + 1} \right) \ge \log \left( {2x - 1} \right)\).
a, ĐK: \(x-2>0\Rightarrow x>2\)
\(log_2\left(x-2\right)< 2\\ \Leftrightarrow x-2< 4\\ \Leftrightarrow x< 6\)
Kết hợp với ĐKXĐ, ta được: \(2< x< 6\)
b, ĐK: \(2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)
\(log\left(x+1\right)\ge log\left(2x-1\right)\\ \Leftrightarrow x+1\ge2x-1\\ \Leftrightarrow x\le2\)
Kết hợp với ĐKXĐ, ta được: \(\dfrac{1}{2}< x\le2\)