G= (x + a)(x + 2a)(x + 3a)(x + 4a) + a4
E = (3x + 2)(3x – 5)(x – 1)(9x + 10) + 24x2
F = 4(x2 + 15x + 50)(x2 + 18x + 72) – 3x2
D = (3x2 – x - 2)(27x2 – 15x – 50) + 24x2
Các bn giúp mk nha, mk đg cần gấp, tksss
Phân tích các đa thức sau thành nhân tử?
a)x^4+5x^3-23x^2-117x-90
d)x^3-9x^2+26x-24
f)(x^2-3x+2)(x^2-3x-6)+12
g)4(x^2+15x+50)(x^2+18x+72)-3x^2
h)27x^3-27x^2+18x-4
4(x^2+15x+50)(x^2 +18x+72)-3x^2
phân tích đa thức thành nhân tử : 4(x^2+50+15x)(x^2+18x+72)-3x^2
\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\)
\(=4\left(x+5\right)\left(x+10\right)\left(x+12\right)\left(x+6\right)-3x^2\)
\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)
\(=4\left(x+60\right)^2+132x\left(x+60\right)+1088x^2-3x^2\)
\(=4\left(x+60\right)^2+132x\left(x+60\right)+1085x^2\)
\(=4\left(x+60\right)^2+62x\left(x+60\right)+70x\left(x+60\right)+1085x^2\)
\(=2\left(x+60\right)\left[2\left(x+60\right)+31x\right]+35x\left[2\left(x+60\right)+31x\right]\)
\(=\left(33x+120\right)\left(2x+120+35x\right)\)
\(=3\left(11x+40\right)\left(37x+120\right)\)
1.PTĐT thành nhân tử
a) \(x^5+4x+5\)
b) \(x^4+6x^3+11x^2+6x+1\)
c) \(64x^4+1\)
c) \(81x^4+4\)
d) \(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\)
e) \(x^5-x^4-1\)
2.PTĐT thành nhân tử (PP hệ số bất định)
a) \(3x^2-22xy-4x+8y+7y^2+1=\left(3x+ay+b\right)\left(x+cy+d\right)\)
b) \(12x^2+5x-12y^2+12y-10xy-3=\left(ã+by-1\right)\left(dx+cy+3\right)\)
a) \(x^5+4x+5=\left(x^5+x^4\right)-\left(x^4+x^3\right)+\left(x^3+x^2\right)-\left(x^2+x\right)+\left(5x+5\right)=x^4\left(x+1\right)-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+5\left(x+1\right)=\left(x^4-x^3+x^2-x+5\right)\left(x+1\right)\)
b) \(x^4+6x^3+11x^2+6x+1=\left(x^4+3x^3+x^2\right)+\left(3x^3+9x^2+3x\right)+\left(x^2+3x+1\right)=x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)=\left(x^2+3x+1\right)^2\)
c) \(64x^4+1=\left[\left(8x^2\right)^2+16x^2+1\right]-16x^2=\left(8x^2+1\right)^2-\left(4x\right)^2=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)d) \(81x^4+4=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)
Câu 1:
\(e,x^5-x^4-1=x^5-x^4+x^3-x^3+x^2-x^2+x-x-1\\ =\left(x^5-x^4-x^3\right)+\left(x^3-x^2-x\right)+\left(x^2-x-1\right)\\ =x^3\left(x^2-x-1\right)+x\left(x^2-x-1\right)+\left(x^2-x-1\right)\\ =\left(x^2-x-1\right)\left(x^3+x+1\right)\)
Câu 2:
\(a,\left(3x+ay+b\right)\left(x+cy+d\right)\\ =3x^2+3xcy+3xd+axy+acy^2+ayd+bx+bcy+bd\\ =3x^2+xy\left(3c+a\right)+x\left(b+3d\right)+y\left(ad+bc\right)+acy^2+bd\\ \Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}3c+a=-22\\b+3d=-4\end{matrix}\right.\\ad+bc=8\\\left\{{}\begin{matrix}ac=7\\bd=1\end{matrix}\right.\end{matrix}\right.\)
Xét \(bd=1\Leftrightarrow\left[{}\begin{matrix}b=1;d=1\\b=-1;d=-1\end{matrix}\right.\)
Với \(b=1;d=1\Leftrightarrow b+3d=1+3\cdot1=4\left(ktm\right)\)
Với \(b=-1;d=-1\Leftrightarrow b+3d=-1-3=-4\left(tm\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3c+a=-22\\-a-c=8\\ac=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\c=-7\end{matrix}\right.\)
Vậy \(3x^2-22xy-4x+8y+7y^2+1=\left(3x-y-1\right)\left(x-7y-1\right)\)
Cái chỗ ngoặc nhọn mà 5 dòng á a ko thấy trong cái phần công thức nên là ghi z chứ nó có 5 dòng đó nha
câu b tương tự, lười wa 😴
Tìm x
a, \(3x^2-5x-12=0\)
b,\(7x^2-9x+2=0\)
c,\(4.\left(x^2+15x+50\right).\left(x^2+18x+72\right)=3x^2\)
d,\(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-3=0\)
trình bày cách làm nữa nha
Phân tích thành nhân tử r tìm x nhé bạn. k đi mình làm
a) \(3x^2-5x-12=0\)
\(\Leftrightarrow3x^2+4x-9x-12=0\)
\(\Leftrightarrow x\left(3x+4\right)-3\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{4}{3}\\x=3\end{cases}}\)
b) \(7x^2-9x+2=0\)
\(\Leftrightarrow7x^2-7x-2x+2=0\)
\(\Leftrightarrow7x\left(x-1\right)-2\left(x-1\right)=0\).
\(\Leftrightarrow\left(7x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x-2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{7}\\x=1\end{cases}}\)
Phân tích đa thức thành nhân tử
\(A=4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\)
(15x/ x2 + 3x - 4 ) - 1 = 12 ( 1/x+4 + 1/3x - 3 )
dúp vs ạ ... e đg cần gấp
Phân tích đa thức thành nhân tử : 4(x2 + 15x + 50)(x2 + 18x + 72) – 3x2
\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\\ =4\left(x+5\right)\left(x+10\right)\left(x+6\right)\left(x+12\right)-3x^2\\ =4\left(x^2+16x+60\right)\left(x^2+17x+60\right)-3x^2\)
Đặt \(x^2+16x+60=a\)
\(=4a\left(a+x\right)-3x^2\\ =4a^2+4ax-3x^2\\ =\left(2a-x\right)\left(2a+3x\right)\\ =\left[2\left(x^2+16x+60\right)-x\right]\left[2\left(x^2+16x+60\right)+3x\right]\\ =\left(2x^2+31x+120\right)\left(2x^2+35x+120\right)\)
(x2+15x+50)(x2+18x+72)−3x2=4(x+5)(x+10)(x+6)(x+12)−3x2=4(x2+16x+60)(x2+17x+60)−3x24(�2+15�+50)(�2+18�+72)−3�2=4(�+5)(�+10)(�+6)(�+12)−3�2=4(�2+16�+60)(�2+17�+60)−3�2
Đặt x2+16x+60=a�2+16�+60=�
=4a(a+x)−3x2=4a2+4ax−3x2=(2a−x)(2a+3x)=[2(x2+16x+60)−x][2(x2+16x+60)+3x]=(2x2+31x+120)(2x2+35x+120)
Bài1: phân tích đa thức thành nhân tử
1) 21x^2y - 12xy^2
2) x^3 + x^2 - 2x
3) 3x. (x - 1) + 7x^2. (x - 1)
4) 3x. (x-a) + 4a. (a-x)
5) 1/2x. (x-2) + 4a. (a-x)
6) 21. (x-y)^2 - 7.(y-x)
7) x^2yz + xy^2z^2 + x^2yz^2
8) 9x^2y^2 + 15x^2y - 21xy^2
9) x^2y^2 - 1
10) x^4y^4 - z^4
11) (x+1)^2 - 24
12) (x+1)^2 - (y+6)^2
13) x^6 + 1
14) -4y^2 + 4y - 1
15) (2a + 3)^2 - (2a + 1)^2
Bài2: tìm x, biết:
a) x^4 - 16x =0
b) x. (x-3) - x +3 =0
c) 4x^2 - 1/4 =0
d) x^3 - 3x^2 + 3x - 1=0
e) 8x^3 - 36x^2 + 54x - 27=0
f) x^2 + 4x = -4
g) x^2 = 6x - 9
Giúp mk với, mai mk phải nộp gấp!!
1)\(21x^2y-12xy^2=xy.\left(21x-12y\right)\)
2)\(x^3+x^2-2x=x.\left(x^2+x-2\right)\)
3)\(3x.\left(x-1\right)+7x^2\left(x-1\right)=\left(x-1\right).\left(3x+7x^2\right)=x.\left(x-1\right)\left(3+7x\right)\)
15)\(\left(2a+3\right)^2-\left(2a+1\right)^2=\left(2a+3-2a-1\right)\left(2a+3+2a+1\right)=2.\left(4a+4\right)=8\left(a+1\right)\)
14) \(-4y^2+4y-1=-\left[\left(2y\right)^2-2.2y.1+1^2\right]=-\left(2y-1\right)^2\)
13) \(x^6+1=\left(x^2\right)^3+1=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
12) \(\left(x+1\right)^2-\left(y+6\right)^2=\left(x+1-y-6\right)\left(x+1+y+6\right)=\left(x-y-5\right)\left(x+y+7\right)\)
4) \(3x\left(x-a\right)+4a\left(a-x\right)=3x.\left(x-a\right)-4a\left(x-a\right)=\left(x-a\right)\left(3x-4a\right)\)
Sao nhiều thế!
Đúng là nhiều thật , dù sao cx cảm ơn bn nhìn nha!!!